System ldentification Toolbox™
Reference

Lennart Ljung

<

MATLAB&SIMULINK

R2021a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

System Identification Toolbox™ Reference
© COPYRIGHT 1988-2021 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
April 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021

Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

Revised for Version 7.1 (Release 2007b)
Revised for Version 7.2 (Release 2008a)
Revised for Version 7.2.1 (Release 2008b)
Revised for Version 7.3 (Release 2009a)
Revised for Version 7.3.1 (Release 2009b)
Revised for Version 7.4 (Release 2010a)
Revised for Version 7.4.1 (Release 2010b)
Revised for Version 7.4.2 (Release 2011a)
Revised for Version 7.4.3 (Release 2011b)
Revised for Version 8.0 (Release 2012a)
Revised for Version 8.1 (Release 2012b)
Revised for Version 8.2 (Release 2013a)
Revised for Version 8.3 (Release 2013b)
Revised for Version 9.0 (Release 2014a)
Revised for Version 9.1 (Release 2014b)
Revised for Version 9.2 (Release 2015a)
Revised for Version 9.3 (Release 2015b)
Revised for Version 9.4 (Release 2016a)
Revised for Version 9.5 (Release 2016b)
Revised for Version 9.6 (Release 2017a)
Revised for Version 9.7 (Release 2017b)
Revised for Version 9.8 (Release 2018a)
Revised for Version 9.9 (Release 2018b)
Revised for Version 9.10 (Release 2019a)
Revised for Version 9.11 (Release 2019b)
Revised for Version 9.12 (Release 2020a)
Revised for Version 9.13 (Release 2020b)
Revised for Version 9.14 (Release 2021a)

Functions

1]

Blocks

2|

Functions

1 Functions

1-2

absorbDelay

Replace time delays by poles at z = 0 or phase shift

Syntax

sysnd = absorbDelay(sysd)
[sysnd,G] = absorbDelay(sysd)

Description

sysnd = absorbDelay(sysd) absorbs all time delays of the dynamic system model sysd into the
system dynamics or the frequency response data.

For discrete-time models (other than frequency response data models), a delay of k sampling periods
is replaced by k poles at z = 0. For continuous-time models (other than frequency response data
models), time delays have no exact representation with a finite number of poles and zeros. Therefore,
use pade to compute a rational approximation of the time delay.

For frequency response data models in both continuous and discrete time, absorbDelay absorbs all
time delays into the frequency response data as a phase shift.

[sysnd,G] = absorbDelay(sysd) returns the matrix G that maps the initial states of the ss
model sysd to the initial states of the sysnd.

Examples

Absorb Time Delay into System Dynamics

Create a discrete-time transfer function that has a time delay.
z = tf('z',-1);

sysd = (-0.4*%z -0.1)/(z"2 + 1.05*z + 0.08);
sysd.InputDelay = 3

z?2 + 1.05 z + 0.08

Sample time: unspecified
Discrete-time transfer function.

The display of sysd represents the InputDelay as a factor of z*(-3), separate from the system
poles that appear in the transfer function denominator.

Absorb the time delay into the system dynamics as poles at z= 0.

sysnd = absorbDelay(sysd)

absorbDelay

z™5 + 1.05 z74 + 0.08 z°3

Sample time: unspecified
Discrete-time transfer function.

The display of sysnd shows that the factor of z”(-3) has been absorbed as additional poles in the
denominator.

Verify that sysnd has no input delay.
sysnd. InputDelay

ans = 0

Convert Leading Structural Zeros of Polynomial Model to Regular Coefficients
Create a discrete-time polynomial model.

m = idpoly(1,[0 0 0 2 3]);

Convert m to a transfer function model.

sys = tf(m)

z™(-2) * (2 z°-1 + 3 z7-2)

Sample time: unspecified
Discrete-time transfer function.

The numerator of the transfer function, sys, is [0 2 3] and the transport delay, sys.I0Delay, is 2.
This is because the value of the B polynomial, m. B, has 3 leading zeros. The first fixed zero shows
lack of feedthrough in the model. The two zeros after that are treated as input-output delays.

Use absorbDelay to treat the leading zeros as regular B coefficients.

= absorbDelay(m);
sys2 = tf(m2)

2 z°-3 + 3 z°-4

Sample time: unspecified
Discrete-time transfer function.

The numerator of sys2is [@ © 0 2 3] and transport delay is 0. The model m2 treats the leading
zeros as regular coefficients by freeing their values. m2.Structure.B.Free(2:3) is TRUE while
m.Structure.B.Free(2:3) is FALSE.

1-3

1 Functions

See Also
hasdelay | pade | totaldelay

Introduced in R2012a

1-4

advice

advice

Analysis and recommendations for data or estimated linear models

Syntax

advice(data)
advice(model,data)

Description

advice(data) displays the following information about the data in the MATLAB® Command
Window:

* What are the excitation levels of the signals and how does this affect the model orders? See also
pexcit.

» Does it make sense to remove constant offsets and linear trends from the data? See also detrend.
» Is there an indication of output feedback in the data? See also feedback.
* Would a nonlinear ARX model perform better than a linear ARX model?

advice(model,data) displays the following information about the estimated linear model in the
MATLAB Command Window:

* Does the model capture essential dynamics of the system and the disturbance characteristics?
* Is the model order higher than necessary?

+ Is there potential output feedback in the validation data?

Input Arguments

data

Specify data as an iddata object.

model

Specify model as an idtf, idgrey, idpoly, idproc, or idss model object.

See Also
detrend | feedback | iddata | pexcit

Introduced before R2006a

1-5

1 Functions

1-6

addreg

(Not recommended) Add custom regressors to nonlinear ARX model

Note addreg is not recommended. Add linear, polynomial, and custom regressors directly to the
idnlarx Regressors property instead. For more information, see “Compatibility Considerations”.

Syntax

m = addreg(model, regressors)

addreg(model, regressors,output)

Description

m = addreg(model, regressors) adds custom regressors to a nonlinear ARX model by appending
the CustomRegressors model property. model and m are idnalrx objects. For single-output
models, regressors is an object array of regressors you create using customreg or polyreg, or a
cell array of character vectors. For multiple-output models, regressors is 1-by-ny cell array of
customreg objects or 1-by-ny cell array of cell arrays of character vectors. addreg adds each
element of the ny cells to the corresponding model output channel. If regressors is a single
regressor, addreg adds this regressor to all output channels.

m = addreg(model, regressors,output) adds regressors regressors to specific output
channels output of a multiple-output model. output is a scalar integer or vector of integers, where
each integer is the index of a model output channel. Specify several pairs of regressors and
output values to add different regressor variables to the corresponding output channels.

Examples

Add Regressors to a Nonlinear ARX Model

Create nonlinear ARX model with standard regressors.
ml = idnlarx([4 2 1], 'wavenet','nlr',[1:3]);

Create model with additional custom regressors, specified as a cell array of character vectors.
m2 = addreg(ml,{'y1l(t-2)72"; 'ul(t)*yl(t-7)'});

List all standard and custom regressors of m2.
getreg(m2)

8x1 cell

'y1(t-1)"
'y1(t-2)"

ans

ol |
<
i

N R~W

B i e s e e ad

)
)
)I
)I
)

addreg

{'yl(t-2)"2" }
{'ul(t)*yl(t-7)"}

Add Regressors to a Nonlinear ARX Model as customreg Objects

Create nonlinear ARX model with standard regressors.

ml = idnlarx([4 2 1], 'wavenet', 'nlr',[1:3]);
Create customreg objects.
rl = customreg(@(x)x~2,{'yl'},2)

Custom Regressor:
Expression: yl(t-2)"2
Function: @(x)x"2
Arguments: {'yl'}
Delays: 2
Vectorized: 0
TimeVariable: 't

r2 = customreg(@(x,y)x*y,{'ul','y1'},[0 71)

Custom Regressor:
Expression: ul(t)*yl(t-7)
Function: @(x,y)x*y
Arguments: {'ul' ‘'yl'}
Delays: [0 7]
Vectorized: O
TimeVariable: 't'

Create a model based on m1 with custom regressors.

m2 = addreg(ml,[rl r2]);
List all standard and custom regressors of m2.
getreg(m2)

ans

el et |
S e o e e e e

Compatibility Considerations

addreg is not recommended
Not recommended starting in R2021a

1-7

1 Functions

Starting in R2021a, add regressor objects LinearRegressor, polynomialRegressor, and
customRegressor directly to the idnlarx model Regressor property by using the syntax
model.Regressors(end+1l) = new regressor object. There are no plans to remove addreg
at this time.

See Also
customRegressor | getreg | idnlarx | linearRegressor | nlarx | polynomialRegressor

Topics
“Identifying Nonlinear ARX Models”

Introduced in R2007a

1-8

aic

aic

Akaike’s Information Criterion for estimated model

Syntax

value = aic(model)

value = aic(modell, ...,modeln)
value = aic(___ ,measure)
Description

value = aic(model) returns the normalized “Akaike's Information Criterion (AIC)” on page 1-12
value for the estimated model.

value = aic(modell,...,modeln) returns the normalized AIC values for multiple estimated
models.

value = aic(___ ,measure) specifies the type of AIC.

Examples

Compute Normalized Akaike's Information Criterion of Estimated Model

Estimate a transfer function model.

load iddatal z1;

np = 2;

sys = tfest(zl,np);

Compute the normalized Akaike's Information Criterion value.
value = aic(sys)

value = 0.5453

The value is also computed during model estimation. Alternatively, use the Report property of the
model to access this value.

sys.Report.Fit.nAIC
ans = 0.5453

Compute Akaike's Information Criterion Metrics of Estimated Model

Estimate a transfer function model.

load iddatal z1;
np = 2;
sys = tfest(zl,np);

1-9

1 Functions

Compute the normalized Akaike's Information Criterion (AIC) value. This syntax is equivalent to
aic_raw = aic(sys).

aic_raw aic(sys, 'nAIC")

aic_raw = 0.5453

Compute the raw AIC value.

aic_raw = aic(sys, 'aic')

aic_raw = 1.0150e+03

Compute the sample-size corrected AIC value.
aic_c = aic(sys, 'AICc')

aic_ ¢ = 1.0153e+03

Compute the Bayesian Information Criteria (BIC) value.

bic aic(sys, 'BIC")

bic 1.0372e+03

These values are also computed during model estimation. Alternatively, use the Report.Fit
property of the model to access these values.

sys.Report.Fit

ans = struct with fields:
FitPercent: 70.7720
LossFcn: 1.6575

MSE: 1.6575
FPE: 1.7252
AIC: 1.0150e+03
AICc: 1.0153e+03
nAIC: 0.5453
BIC: 1.0372e+03

Pick Model with Optimal Tradeoff Between Accuracy and Complexity Using AICc Criterion

Estimate multiple Output-Error (OE) models and use the small sample-size corrected Akaike's
Information Criterion (AICc) value to pick the one with optimal tradeoff between accuracy and
complexity.

Load the estimation data.
load iddata2

Specify model orders varying in 1:4 range.

nf = 1:4;
nb = 1:4;
nk = 0:4;

1-10

aic

Estimate OE models with all possible combinations of chosen order ranges.

NN = struc(nf,nb,nk);
models = cell(size(NN,1),1);
for ct = 1:size(NN,1)
models{ct} = oe(z2, NN(ct,:));
end

Compute the small sample-size corrected AIC values for the models, and return the smallest value.

V = aic(models{:}, 'AICc');
[Vmin,I] = min(V);

Return the optimal model that has the smallest AICc value.

models{I}

ans =
Discrete-time OE model: y(t) = [B(z)/F(z)]u(t) + e(t)
B(z) = 1.067 z"-2

F(z) =1 - 1.824 z~-1 + 1.195 z~-2 - 0.2307 z"-3
Sample time: 0.1 seconds

Parameterization:
Polynomial orders: nb=1 nf=3 nk=2
Number of free coefficients: 4
Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.

Status:

Estimated using OE on time domain data "z2".
Fit to estimation data: 86.53%

FPE: 0.9809, MSE: 0.9615

Input Arguments

model — Identified model
idtf | idgrey | idpoly | idproc | idss | idnlarx,

idnlhw | idnlgrey
Identified model, specified as one of the following model objects:

o idtf
* idgrey
* idpoly
e idproc
* 1idss

* 1idnlarx, except nonlinear ARX model that includes a binary-tree or neural network nonlinearity
estimator

o idnlhw
* idnlgrey

measure — Type of AIC
'nAIC' (default) | 'aic' | 'AICc' | 'BIC'

1-11

1 Functions

1-12

Type of AIC, specified as one of the following values:

* 'nAIC' — Normalized AIC

* 'aic' —RawAIC

* 'AICc' — Small sample-size corrected AIC
* 'BIC' — Bayesian Information Criteria

See “Akaike's Information Criterion (AIC)” on page 1-12 for more information.

Output Arguments

value — Value of quality metric
scalar | vector

Value of the quality measure, returned as a scalar or vector. For multiple models, value is a row
vector where value (k) corresponds to the kth estimated model modelk.

More About

Akaike's Information Criterion (AIC)

Akaike's Information Criterion (AIC) provides a measure of model quality obtained by simulating the
situation where the model is tested on a different data set. After computing several different models,
you can compare them using this criterion. According to Akaike's theory, the most accurate model has
the smallest AIC. If you use the same data set for both model estimation and validation, the fit always
improves as you increase the model order and, therefore, the flexibility of the model structure.

Akaike's Information Criterion (AIC) includes the following quality metrics:

* Raw AIC, defined as:

AIC = N*log(det %ﬁe(t, o n)(e(t. 6 N))T +2n, + N*(ny* (log(2m) + 1))
1

where:

e N is the number of values in the estimation data set
* &(t) is a ny-by-1 vector of prediction errors
* 0Oy represents the estimated parameters

* 1, is the number of estimated parameters
* n,is the number of model outputs
* Small sample-size corrected AIC, defined as:

n,+1
= *__ P -
AICc = AIC + 2np N-n,—1

* Normalized AIC, defined as:

O) |

det N

nAIC = log

aic

* Bayesian Information Criteria, defined as:

BIC = N*log|det %ge(b 9AN)(€(tr QAN))T
T

+ N*(ny*log(ZH) +1)+ np*log(N)

Tips

» The software computes and stores all types of Akaike's Information Criterion metrics during model
estimation. If you want to access these values, see the Report.Fit property of the model.

References

[1] Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hall PTR,
1999. See sections about the statistical framework for parameter estimation and maximum
likelihood method and comparing model structures.

See Also
fpe | goodnessOfFit

Topics
“Loss Function and Model Quality Metrics”

Introduced before R2006a

1-13

1 Functions

append

Group models by appending their inputs and outputs

Syntax

sys = append(sysl,sys2,...,sysN)

Description
sys = append(sysl,sys2,...,sysN) appends the inputs and outputs of the models
sysl,...,sysN to form the augmented model sys depicted below.
q - Sys e Y
iy — | Sys2 - ¥o
U | sYSN - Yy
sys
For systems with transfer functions H;(s), . . . , Hx(s), the resulting system sys has the block-diagonal

transfer function

His) 0 .. O
0 Hy(s) -
: : .0
0 « 0 Hpl(s)

For state-space models sys1 and sys2 with data (4, B;, C;, D;) and (A,, B,, C,, D,),
append(sysl, sys2) produces the following state-space model:

Xl A1 0 X1 Bl 0 ui
xzzlo Asllxe| 710 Byl
Vi C1 01]Ixq Dy 0]ug
[yzlzlo Co|[x2 [0 D, Uz]

1-14

append

Arguments

The input arguments sys1,..., sysN can be model objects s of any type. Regular matrices are also
accepted as a representation of static gains, but there should be at least one model in the input list.
The models should be either all continuous, or all discrete with the same sample time. When
appending models of different types, the resulting type is determined by the precedence rules (see
“Rules That Determine Model Type” (Control System Toolbox) for details).

There is no limitation on the number of inputs.

Examples

Append Inputs and Outputs of Models

Create a SISO transfer function.

sysl = tf(1,[1 0]);
size(sysl)

Transfer function with 1 outputs and 1 inputs.
Create a SISO continuous-time state-space model.

sys2 = ss(1,2,3,4);
size(sys2)

State-space model with 1 outputs, 1 inputs, and 1 states.

Append the inputs and outputs of sys1, a SISO static gain system, and sys2. The resulting model
should be a 3-input, 3-output state-space model.

sys = append(sysl,10,sys2)

Ssys =
A =
x1 x2
x1 0 0
x2 0 1
B =
ul u2 u3
x1 1 0 0
x2 0 0 2
C =
x1 x2
yl 1 0
y2 0 0
y3 0 3
D =
ul u2 u3
yl 0 0 0
y2 0 10 0
y3 0 0 4

1-15

1 Functions

Continuous-time state-space model.
size(sys)

State-space model with 3 outputs, 3 inputs, and 2 states.

See Also
connect | feedback | parallel | series

Introduced in R2012a

1-16

ar

ar

Estimate parameters of AR model or ARI model for scalar time series

Syntax

sys = ar(y,n)

sys = ar(y,n,approach,window)

sys = ar(y,n, __ ,Name,Value)

sys = ar(y,n, __ ,opt)

[sys,refl] = ar(y,n,approach,)
Description

sys = ar(y,n) estimates the parameters of an AR on page 1-25 idpoly model sys of order n
using a least-squares method. The model properties include covariances (parameter uncertainties)
and estimation goodness of fit.

sys = ar(y,n,approach,window) uses the algorithm specified by approach and the
prewindowing and postwindowing specification in window. To specify window while accepting the
default value for approach, use [] in the third position of the syntax.

sys = ar(y,n, _ ,Name,Value) specifies additional options using one or more name-value pair
arguments. For instance, using the name-value pair argument 'IntegrateNoise', 1 estimates an
ARI on page 1-25 model, which is useful for systems with nonstationary disturbances. Specify

Name, Value after any of the input argument combinations in the previous syntaxes.

sys = ar(y,n, ,opt) specifies estimation options using the option set opt.

[sys,refl] = ar(y,n,approach,) returns an AR model along with the reflection
coefficients refl when approach is the lattice-based method 'burg'’ or 'gl"'.

Examples

AR Model
Estimate an AR model and compare its response with the measured output.

Load the data, which contains the time series z9 with noise.
load iddata9 z9
Estimate a fourth-order AR model.
sys = ar(z9,4)
sys =
Discrete-time AR model: A(z)y(t) = e(t)
A(z) =1 - 0.8369 z~-1 - 0.4744 z~-2 - 0.06621 z~-3 + 0.4857 z"-4

Sample time: 0.0039063 seconds

1-17

1 Functions

1-18

Parameterization:

Polynomial orders: na=4

Number of free coefficients: 4

Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.
Status:

Estimated using AR ('fb/now') on time domain data "z9".
Fit to estimation data: 79.38%
FPE: 0.5189, MSE: 0.5108

The output displays the polynomial containing the estimated parameters alongside other estimation
details. Under Status, Fit to estimation data shows that the estimated model has 1-step-
ahead prediction accuracy above 75%.

You can find additional information about the estimation results by exploring the estimation report,
sys.Report. For instance, you can retrieve the parameter covariance.

covar = sys.Report.Parameters.FreeParCovariance
covar = 4x4

.0015 -0.0015 -0.0005 0.0007
.0015 0.0027 -0.0008 -0.0004
.0005 -0.0008 0.0028 -0.0015
.0007 -0.0004 -0.0015 0.0014

[
[cNoNoNO)

For more information on viewing the estimation report, see “Estimation Report”.

Compare Burg's Method with Forward-Backward Approach

Given a sinusoidal signal with noise, compare the spectral estimates of Burg's method with those
found using the forward-backward approach.

Generate an output signal and convert it into an iddata object.

sin([1:300]') + 0.5*randn(300,1);
iddata(y);

y
y

Estimate fourth-order AR models using Burg's method and using the default forward-backward
approach. Plot the model spectra together.

sys b = ar(y,4,'burg');

sys fb = ar(y,4);
spectrum(sys b,sys fb)
legend('Burg', 'Forward-Backward")

ar

Power Spectrum

~ From:e@y1 To: yi
15 T . I
Burg
Forward-Backward
101 " T
f
IW
|
—_— [y I |I
m : i I | T
= |
= I| [
[15] | II
g |
o gt '.I -
-ar .\ /‘— -
\
-10 — ! 'ﬂ
102 107! 10°

10’
Frequency (rad/s)

The two responses match closely throughout most of the frequency range

ARI Model

Estimate an ARI model, which includes an integrator in the noise source.

Load the data, which contains the time series z9 with noise.

load iddata9 z9
Integrate the output signal.

y = cumsum(z9.y);

Estimate an AR model with 'IntegrateNoise' set to true. Use the least-squares method '1s'.
Because y is a vector and not an iddata object, specify Ts.

Ts = 29.Ts;
sys = ar(y,4,'ls','Ts"',Ts, 'IntegrateNoise', true);

Predict the model output using 5-step prediction and compare the result with the integrated output
signal y.

compare(y,sys,5)

1-19

1 Functions

1-20

5-Step Predicted Response Comparison
EDD T T T T T T T T T
f

| Validation data (y1)
sys: TB.76%

180 1]

100 X\J‘M WNMWWWMHWJM

Amplitude
vl

ED]]

—SD 1 1 1 1
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (seconds)

Modify Default Options

Modify the default options for the AR function.

Load the data, which contains a time series z9 with noise.
load iddata9 z9

Modify the default options so that the function uses the 'ls' approach and does not estimate
covariance.

opt = arOptions('Approach','ls', 'EstimateCovariance', false)

opt =
Option set for the ar command:

Approach: 'ls'
Window: 'now'
DataOffset: 0
EstimateCovariance: 0
MaxSize: 250000

Description of options

Estimate a fourth-order AR model using the updated options.

ar

sys = ar(z9,4,opt);

Retrieve Reflection Coefficients for Burg's Method
Retrieve reflection coefficients and loss functions when using Burg's method.

Lattice-based approaches such, as Burg's method 'burg' and geometric lattice 'gl’', compute
reflection coefficients and corresponding loss function values as part of the estimation process. Use a
second output argument to retrieve these values.

Generate an output signal and convert it into an iddata object.

sin([1:300]') + 0.5*randn(300,1);
iddata(y);

y
y
Estimate a fourth-order AR model using Burg's method and include an output argument for the

reflection coefficients.

[sys,refl] = ar(y,4, 'burg');
refl

refl = 2x5

0 -0.3562 0.4430 0.5528 0.2385
0.8494 0.7416 0.5960 0.4139 0.3904

Input Arguments

y — Time-series data
iddata ohject | double vector

Time-series data, specified as one of the following:

* An iddata object that contains a single output channel and an empty input channel.

* A double column vector containing output-channel data. When you specify y as a vector, you must
also specify the sample time Ts.

n — Model order
positive integer

Model order, specified as a positive integer. The value of n determines the number of A parameters in
the AR model.

Example: ar(idy,2) computes a second-order AR model from the single-channel iddata object idy

approach — Algorithm for computing AR model
"fb' (default) | "burg' | 'gl' | '1s' | "yw'

Algorithm for computing the AR model, specified as one of the following values:

* 'burg': Burg's lattice-based method. Solves the lattice filter equations using the harmonic mean
of forward and backward squared prediction errors.

1-21

1 Functions

1-22

+ 'fb': (Default) Forward-backward approach. Minimizes the sum of a least-squares criterion for a
forward model, and the analogous criterion for a time-reversed model.

* 'gl': Geometric lattice approach. Similar to Burg's method, but uses the geometric mean instead
of the harmonic mean during minimization.

* 'ls': Least-squares approach. Minimizes the standard sum of squared forward-prediction errors.
* 'yw': Yule-Walker approach. Solves the Yule-Walker equations, formed from sample covariances.
All of these algorithms are variants of the least-squares method. For more information, see
“Algorithms” on page 1-26 .

Example: ar(idy,2, 'ls"') computes an AR model using the least-squares approach

window — Prewindowing and postwindowing
‘now' | 'pow' | 'ppw' | 'prw

Prewindowing and postwindowing outside the measured time interval (past and future values),
specified as one of the following values:

* 'now': No windowing. This value is the default except when you set approach to 'yw'. Only
measured data is used to form regression vectors. The summation in the criteria starts at the
sample index equal to n+1.

* 'pow': Postwindowing. Missing end values are replaced with zeros and the summation is
extended to time N+n (N is the number of observations).

* 'ppw': Prewindowing and postwindowing. The software uses this value whenever you select the
Yule-Walker approach 'yw', regardless of your window specification.

* 'prw': Prewindowing. Missing past values are replaced with zeros so that the summation in the
criteria can start at time equal to zero.

Example: ar(idy,2, 'yw', 'ppw') computes an AR model using the Yule-Walker approach with
prewindowing and postwindowing.

opt — Estimation options
arOptions option set

Estimation options for AR model identification, specified as an arOptions option set. opt specifies
the following options:

» Estimation approach
* Data windowing technique
* Data offset

* Maximum number of elements in a segment of data

For more information, see arOptions. For an example, see “Modify Default Options” on page 1-20.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'IntegrateNoise', true adds an integrator in the noise source

ar

Ts — Sample time
1 (default) | positive scalar

Sample time, specified as the comma-separated pair consisting of 'Ts' and the sample time in
seconds. If y is a double vector, then you must specify 'Ts"'.

Example: ar(y signal,2,'Ts',0.08) computes a second-order AR model with sample time of
0.08 seconds

IntegrateNoise — Add integrator to noise channel
false (default) | logical vector

Noise-channel integration option for estimating ARI on page 1-25 models, specified as the comma-
separated pair consisting of 'IntegrateNoise' and a logical. Noise integration is useful in cases
where the disturbance is nonstationary.

When using 'IntegrateNoise', you must also integrate the output-channel data. For an example,
see “ARI Model” on page 1-19.

Output Arguments

sys — AR or ARI model
idpoly model object

AR on page 1-25 or ARI on page 1-25 model that fits the given estimation data, returned as a
discrete-time idpoly model object. This model is created using the specified model orders, delays,
and estimation options.

Information about the estimation results and options used is stored in the Report property of the
model. Report has the following fields.

Report Description

Field

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method Estimation command used.

1-23

1 Functions

1-24

Report Description
Field
Fit Quantitative assessment of the estimation, returned as a structure. See “Loss Function
and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:
Field Description
FitPerce |Normalized root mean squared error (NRMSE) measure of how well the
nt response of the model fits the estimation data, expressed as the
percentage fit = 100(1-NRMSE).
LossFcn |Value of the loss function when the estimation completes.
MSE Mean squared error (MSE) measure of how well the response of the
model fits the estimation data.
FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC) measure of model quality.
AICc Small sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).
Parameter |Estimated values of model parameters.
S
OptionsUs |Option set used for estimation. If no custom options were configured, this is a set of
ed default options. See arOptions for more information.
RandState |State of the random number stream at the start of estimation. Empty, [], if

randomization was not used during estimation. For more information, see rng.

ar

Report Description

Field
DataUsed |Attributes of the data used for estimation, returned as a structure with the following
fields:
Field Description
Name Name of the data set.
Type Data type.

Length Number of data samples.

Ts Sample time.

InterSam |Input intersample behavior, returned as one of the following values:
ple

between samples.

» 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

signal has zero power above the Nyquist frequency.

* 'zoh' — Zero-order hold maintains a piecewise-constant input signal

* 'bl' — Band-limited behavior specifies that the continuous-time input

InputOff |Offset removed from time-domain input data during estimation. For
set nonlinear models, itis [].

OQutputOf |Offset removed from time-domain output data during estimation. For
fset nonlinear models, it is [].

For more information on using Report, see “Estimation Report”.

refl — Reflection coefficients and loss functions
array

Reflection coefficients and loss functions, returned as a 2-by-2 array. For the two lattice-based
approaches 'burg' and 'gl', refl stores the reflection coefficients in the first row and the
corresponding loss function values in the second row. The first column of ref1 is the zeroth-order
model, and the (2, 1) element of refl is the norm of the time series itself. For an example, see
“Retrieve Reflection Coefficients for Burg's Method” on page 1-21.

More About

AR (Autoregressive) Model

The AR model structure has no input, and is given by the following equation:

This model structure accommodates estimation for scalar time-series data, which have no input
channel. The structure is a special case of the ARX structure.

ARI (Autoregressive Integrated) Model

The ARI model is an AR model with an integrator in the noise channel. The ARI model structure is
given by the following equation:

1-25

1 Functions

1-26

Algorithms

AR and ARI model parameters are estimated using variants of the least-squares method. The
following table summarizes the common names for methods with a specific combination of approach

and window argument values.

Method

Approach and Windowing

Modified covariance method

(Default) Forward-backward approach with no
windowing

Correlation method

Yule-Walker approach with prewindowing and
postwindowing

Covariance method

Least squares approach with no windowing. arx
uses this routine

References

[1] Marple, S. L., Jr. Chapter 8. Digital Spectral Analysis with Applications. Englewood Cliffs, NJ:

Prentice Hall, 1987.

See Also

arOptions | arx|etfe| forecast | iddata | idpoly | ivar | pem | spa | spectrum

Topics

“What Are Time Series Models?”
“Representing Data in MATLAB Workspace”

“Identify Time Series Models at the Command Line”

Introduced in R2006a

armax

armax

Estimate parameters of ARMAX, ARIMAX, ARMA, or ARIMA model using time-domain data

Syntax

sys = armax(data, [na nb nc nk])

sys = armax(data, [na nb nc nk],Name,Value)
sys = armax(data,init sys)

sys = armax(data, ,opt)

[sys,ic] = armax(_)

Description

Estimate an ARMAX Model

sys = armax(data,[na nb nc nk]) estimates the parameters of an ARMAX on page 1-40 or an
ARMA on page 1-41 idpoly model sys using the prediction-error method and the polynomial
orders specified in [na nb nc nk]. The model properties include estimation covariances
(parameter uncertainties) and goodness of fit between the estimated and the measured data.

sys = armax(data, [na nb nc nk],Name,Value) specifies additional options using one or more
name-value pair arguments. For instance, using the name-value pair argument

'IntegrateNoise', 1 estimates an ARIMAX on page 1-41 or ARIMA on page 1-41 model, which

is useful for systems with nonstationary disturbances.

Configure Initial Parameters

sys = armax(data,init sys) uses the discrete-time linear model init sys to configure the
initial parameterization.

Specify Additional Options

sys = armax(data, ,opt) incorporates an option set opt that specifies options such as
estimation objective, handling of initial conditions, regularization, and numerical search method to
use for estimation. Specify opt after any of the previous input-argument combinations.

Return Estimated Initial Conditions
[sys,ic] = armax() returns the estimated initial conditions as an initialCondition
object. Use this syntax if you plan to simulate or predict the model response using the same

estimation input data and then compare the response with the same estimation output data.
Incorporating the initial conditions yields a better match during the first part of the simulation.

Examples

Estimate ARMAX Model

Estimate an ARMAX model and view the fit of the model output to the estimation data.

1-27

1 Functions

1-28

Load the measurement data in iddata object z2.

load iddata2 z2

Estimate an ARMAX model with second-order A,B, and C polynomials and a transport delay of one
sample period.

na ;
nb ;
nc ;
nk ;
sys = armax(z2,[na nb nc nkl])

FNNN

sys =
Discrete-time ARMAX model: A(z)y(t) = B(z)u(t) + C(z)e(t)
A(z) =1 - 1.512 z~-1 + 0.7006 z"-2

w
N
Il

-0.2606 z*-1 + 1.664 z"-2

(@]
N
Il

1 -1.604 z*-1 + 0.7504 z"-2

Sample time: 0.1 seconds

Parameterization:

Polynomial orders: na=2 nb=2 nc=2 nk=1

Number of free coefficients: 6

Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.
Status:

Estimated using ARMAX on time domain data "z2".
Fit to estimation data: 85.89% (prediction focus)
FPE: 1.086, MSE: 1.054

The output displays the polynomial containing the estimated parameters alongside the estimation
details. Under Status, Fit to estimation data shows that the estimated model has 1-step-
ahead prediction accuracy above 80%.

Compare the model simulated output to the measured data.

compare(z2,sys)

armax

Simulated Response Comparison
'1 5 T T T T T T T
22 (y1)
sys: 85.60%

10r H ﬂ

Amplitude
vl
[

|

_,15 1 1 1 1 1
5 10 15 20 25 30 35 40

Time (seconds)

The fit of the simulated model to the measured data is nearly the same as the estimation fit.

ARMA Model

Estimate an ARMA model and compare its response with both the measured output and an AR model.
Load the data, which contains the time series z9 with noise.

load iddata9 z9

Estimate a fourth-order ARMA model with a first-order C polynomial.

na
nc ;
sys = armax(z9,[na ncl);

4;
1.

Estimate a fourth-order AR model.
sys_ar = ar(z9,na);
Compare the model outputs with the measured data.

compare(z9,sys,sys_ar)

1-29

1 Functions

Simulated Response Comparison

4’5 T T T T T T T T T
ﬁ z8 (y1)
70 sys: 84.99%
T sys_ar 61.17%
15
10 F
s]l
=
3 |
2> 571 n A
5 | [\ A
| WooOp b o TR VTRARY T | T adam s
ot ||| NS
” \
st
wd | U
|
100
||
U
_15 1 1 1 1 1 1 1 1 1
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time (seconds)

The ARMA model has the better fit to the data.

Specify Estimation Options

Estimate an ARMAX model from measured data and specify estimation options.

Load the data and create an iddata object. Initialize option set opt, and set options for Focus,
SearchMethod, MaxIterations, and Display. Then estimate the ARMAX model using the updated

option set.

load twotankdata;

z = iddata(y,u,0.2);

opt = armaxOptions;

opt.Focus = 'simulation';
opt.SearchMethod = 'lm';
opt.SearchOptions.MaxIterations = 10;
opt.Display = 'on';

sys = armax(z,[2 2 2 1],opt);

The termination conditions for measured component of the model shown in the progress viewer is

that the maximum number of iterations were reached.

To improve results, re-estimate the model using a greater value for MaxIterations, or continue

iterations on the previously estimated model as follows:

1-30

armax

sys2 = armax(z,sys);
compare(z,sys,sys2)

Simulated Response Comparison

z{y1)
sys: 65.52%
sys2:64.71%

!

Amplitude

01 : : : : :
100 200 300 400 500 600

Time (seconds)

where sys2 refines the parameters of sys to improve the fit to data.

ARMAX Model with Regularization

Estimate a regularized ARMAX model by converting a regularized ARX model.

Load data.

load regularizationExampleData.mat mOsimdata;

Estimate an unregularized ARMAX model of order 30.

ml = armax(mOsimdata(1:150),[30 30 30 1]);

Estimate a regularized ARMAX model by determining the Lambda value by trial and error.
opt = armaxOptions;

opt.Regularization.Lambda = 1;

m2 = armax(mOsimdata(1l:150),[30 30 30 1],opt);

Obtain a lower order ARMAX model by converting a regularized ARX model and then performing
order reduction.

1-31

1 Functions

optl = arxOptions;

[L,R] = arxRegul(mO@simdata(1:150),[30 30 1]);
optl.Regularization.Lambda = L;
optl.Regularization.R = R;

m@ = arx(mO@simdata(1l:150),[30 30 1],optl);

mr = idpoly(balred(idss(m@),7));

Compare the model outputs against the data.

opt2 = compareOptions('InitialCondition','z");
compare(mO@simdata(150:end),ml,m2,mr,opt2);

Simulated Response Comparison

25 T T T T T
' Validation data (y1)
2r m1:41.22% I
me2: 52.13%

Vi
© ' | , Il I| .. (I\ ;I'H’i' ﬁ\" |
2 a1 |r J-|||| A \) H '- IJi'|| |
£ J] -W‘ "AANaR

. \Y W/ ?] | H
!P J | I|I| | I| H
II || [
|
-2'51'5I3 1IZ:E 1?II3 1EI~!~I3 1EI.‘I3 EIIZE 210
Time (seconds)
ARIMA Model

Estimate a fourth-order ARIMA model for univariate time-series data.

Load data that contains a time series with noise.

load iddata9 z9;

Integrate the output signal and use the result to replace the original output signal in z9.
z9.y = cumsum(z9.y);

Estimate a fourth-order ARIMA model with a first-orderCpolynomial by setting 'IntegrateNoise' to
true.

1-32

armax

model = armax(z9,[4 1], 'IntegrateNoise', true);

Predict the model output using 10-step ahead prediction, and compare the predicted output with the
estimation data.

compare(z9,model, 10)

10-Step Predicted Response Comparison

200 T T T T T T T . :
|[’|| 28 (y1)
H model: 85.97%
150 : | -
| lf\
100 F || { v!/\#fq\ww _

Amplitude
vl

£n
=

—L
I

0.2 04 06 08 1 12 14 16 18 2
Time (seconds)

i
en
]

Estimate ARMAX Models Iteratively
Estimate ARMAX models of varying orders iteratively from measured data.

Load dryer2 data and perform estimation for combinations of polynomial orders na, nb, nc, and
input delay nk.

load dryer2;
z = iddata(y2,u2,0.08, 'Tstart',0Q);

na = 2:4;
nc = 1:2;
nk = 0:2;
models = cell(1,18);
ct = 1;
for i = 1:3
na_ = na(i);
nb_ = na_;
for j = 1:2

1-33

1 Functions

nc_ = nc(j);

for k = 1:3
nk_ = nk(k);
models{ct} = armax(z,[na_nb_nc_nk]);
ct = ct+1;

end

end
end

Stack the estimated models and compare their simulated responses to the estimation data z.

models = stack(1l,models{:});
compare(z,models)

Simulated Response Comparison

6.5 T T T T T T T
z(y1)
models(::, 1) 58.91%
6] madels(::,2): 76.68%
models(:: 3% 85.97%
models(:: 4% 71.74%
models(:: 5% 78.2%
models(:: 6 §5.92%
| N models(:,: 7): 87.44%
models(:,: 8): 88.43% ',\
models(:: 9% 88.32%
as | [models(:,:, 10} 87.49%
‘ l models(::, 11 88.43%
' models(:,:

5.5

Amplitude
¥

J2) BB.43%
| models(::,13) 88.41%
4 models(;:, 14): 88.4%
models(::,15): 88.38%
| models(:,: 16): 88 36% | |
35 madels(::,17): 88.37%
models(:,:,18): 88.48%

0 10 20 30 40 50 60 70

Time (seconds)

Initialize ARMAX Model Parameters Using State-Space Model

Load the estimation data.

load iddata2 z2

Estimate a state-space model of order 3 from the estimation data.
sys0 = n4sid(z2,3);

Estimate an ARMAX model using the previously estimated state-space model to initialize the
parameters.

1-34

armax

sys = armax(z2,sys0);

Obtain Initial Conditions

Load the data.

load iddatalic z1i

Estimate a second-order ARMAX model sys and return the initial conditions in ic.
na

nb
nc

H R NNN

=)
=
O ~= ~= == ==

1 = armax(z1li,[na nb nc nk]);

- —
O un
<
wn

ic =
initialCondition with properties:

A: [2x2 double]
X0: [2x1 doublel]
C: [0 1]
Ts: 0.1000

icisan initialCondition object that encapsulates the free response of sys, in state-space form,
to the initial state vector in X0. You can incorporate ic when you simulate sys with the z1i input
signal and compare the response with the z11i output signal.

Input Arguments

data — Time-domain estimation data
iddata object

Time-domain estimation data, specified as an iddata object. For ARMA and ARIMA time-series
models, the input channel in data must be empty. For examples, see “ARMA Model” on page 1-29 and
“ARIMA Model” on page 1-32.

[na nb nc nk] — Polynomial orders
integer row vector | row vector of integer matrices | scalar

Polynomial orders and delays for the model, specified as a 1-by-4 vector or vector of matrices [na nb
nc nk]. The polynomial order is equal to the number of coefficients to estimate in that polynomial.

For an ARMA or ARIMA time-series model, which has no input, set [na nb nc nk] to [na nc]. For
an example, see “ARMA Model” on page 1-29.

For a model with Ny outputs and Nu inputs:

* na is the order of the polynomial A(q), specified as an Ny-by-Ny matrix of nonnegative integers.

* nb is the order of the polynomial B(q) + 1, specified as an Ny-by-Nu matrix of nonnegative
integers.

1-35

1 Functions

1-36

* nc is the order of the polynomial C(q), specified as a column vector of nonnegative integers of
length Ny.

* nk is the input-output delay, also known at the transport delay, specified as an Ny-by-Nu matrix of
nonnegative integers. nk is represented in ARMAX models by fixed leading zeros of the B
polynomial.

For an example, see “Estimate ARMAX Model” on page 1-27.

init_sys — System for configuring initial parameterization
discrete-time linear model

System for configuring the initial parameterization of sys, specified as a discrete-time linear model.
You obtain init sys by either performing an estimation using measured data or by direct
construction using commands such as idpoly and idss.

If init sys is an ARMAX model, armax uses the parameter values of init sys as the initial guess
for estimation. To configure initial guesses and constraints for A(q), B(q), and C(q), use the
Structure property of init sys. For example:

» To specify an initial guess for the A(q) term of init sys, set init sys.Structure.A.Value as
the initial guess.
» To specify constraints for the B(q) term of init sys:

* Setinit sys.Structure.B.Minimum to the minimum B(q) coefficient values.
* Setinit sys.Structure.B.Maximum to the maximum B(q) coefficient values.
* Setinit sys.Structure.B.Free toindicate which B(q) coefficients are free for estimation.

If init sys is not a polynomial model with the ARMAX structure, the software first converts
init sys to an ARMAX model. armax uses the parameters of the resulting model as the initial guess
for estimating sys.

If opt is not specified and init sys was obtained by estimation, then the estimation options from
init sys.Report.OptionsUsed are used.

For an example, see “Initialize ARMAX Model Parameters Using State-Space Model” on page 1-34.

opt — Estimation options
armaxOptions option set

Estimation options for ARMAX model identification, specified as an armaxOptions option set.
Options specified by opt include the following:

+ Initial condition handling — Use this option to determine how the initial conditions are set or
estimated.

* Input and output data offsets — Use these options to remove offsets from data during estimation.

* Regularization — Use this option to control the tradeoff between bias and variance errors during
the estimation process.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

armax

Example: 'InputDelay', 2 applies an input delay of two sample periods to all input channels

InputDelay — Input delays
0 (default) | integer scalar | positive integer vector

Input delays expressed as integer multiples of the sample time, specified as the comma-separated
pair consisting of ' InputDelay' and one of the following:

* N,by-1 vector, where N, is the number of inputs — Each entry is a numerical value representing
the input delay for the corresponding input channel.

* Scalar value — Apply the same delay to all input channels.

* 0 — No input delays.

Example: armax(data,[2 1 1 O], 'InputDelay', 1) estimates a second-order ARX model with
first-order B and C polynomials that has an input delay of two samples.

I0Delay — Transport delays
0 (default) | scalar | matrix

Transport delays for each input-output pair, expressed as integer multiples of the sample time, and
specified as the comma-separated pair consisting of ' I0Delay' and one of the following:

* N,-by-N, matrix, where N, is the number of outputs and N, is the number of inputs — Each entry
is an integer value representing the transport delay for the corresponding input-output pair.

* Scalar value — Apply the same delay to all input-output pairs.

"I0Delay' is useful as a replacement for the nk order. You can factor out max(nk-1,0) lags as the
'I0ODelay' value. For nk > 1, armax(na, nb, nk) is equivalent to

armax(na,nb,1, 'IODelay',nk-1).

IntegrateNoise — Addition of integrators in noise channel
false (default) | logical vector

Addition of integrators in the noise channel, specified as the comma-separated pair consisting of
‘IntegrateNoise’' and a logical vector of length N,, where N, is the number of outputs.

Setting 'IntegrateNoise' to true for a particular output results in the model

A(q)y(t) = B(q)u(t — nk) + 1€(3)_1€(t)

where

— is the integrator in the noise channel, e(t).

Use 'IntegrateNoise’ to create ARIMA or ARIMAX models.

For an example, see “ARIMA Model” on page 1-32.

Output Arguments

sys — ARMAX model
idpoly object

1-37

1 Functions

1-38

ARMAX model that fits the given estimation data, returned as a discrete-time idpoly object. This
model is created using the specified model orders, delays, and estimation options.

Information about the estimation results and options used is stored in the Report property of the
model. Report has the following fields.

Report
Field

Description

Status

Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method

Estimation command used.

InitialCo
ndition

Handling of initial conditions during model estimation, returned as one of the following
values:
o ‘'zero' — The initial conditions were set to zero.

* ‘'estimate' — The initial conditions were treated as independent estimation
parameters.

* ‘'backcast' — The initial conditions were estimated using the best least squares
fit.

This field is especially useful to view how the initial conditions were handled when the
InitialCondition option in the estimation option setis 'auto’.

Fit

Quantitative assessment of the estimation, returned as a structure. See “Loss Function
and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:

Field Description

FitPerce |Normalized root mean squared error (NRMSE) measure of how well the
nt response of the model fits the estimation data, expressed as the
percentage fit = 100(1-NRMSE).

LossFcn |Value of the loss function when the estimation completes.

MSE Mean squared error (MSE) measure of how well the response of the

model fits the estimation data.

FPE Final prediction error for the model.

AIC Raw Akaike Information Criteria (AIC) measure of model quality.

AICc Small sample-size corrected AIC.

nAIC Normalized AIC.

BIC Bayesian Information Criteria (BIC).

Parameter
S

Estimated values of model parameters.

OptionsUs
ed

Option set used for estimation. If no custom options were configured, this is a set of
default options. See armaxOptions for more information.

RandState

State of the random number stream at the start of estimation. Empty, [], if
randomization was not used during estimation. For more information, see rng.

armax

Report Description
Field
DataUsed |Attributes of the data used for estimation, returned as a structure with the following
fields:
Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time.
InterSam |Input intersample behavior, returned as one of the following values:
ple
* 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.
» 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.
* 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.
InputOff |Offset removed from time-domain input data during estimation. For
set nonlinear models, itis [].
OQutputOf |Offset removed from time-domain output data during estimation. For
fset nonlinear models, it is [].
Terminati |Termination conditions for the iterative search used for prediction error minimization,
on returned as a structure with the following fields:

Field

Description

WhyStop

Reason for terminating the numerical search.

Iteratio
ns

Number of search iterations performed by the estimation algorithm.

FirstOrd
erOptima
lity

co-norm of the gradient search vector when the search algorithm
terminates.

FcnCount

Number of times the objective function was called.

UpdateNo
rm

Norm of the gradient search vector in the last iteration. Omitted when the
search method is ' Lsgnonlin' or 'fmincon'.

LastImpr
ovement

Criterion improvement in the last iteration, expressed as a percentage.
Omitted when the search method is ' Lsgnonlin' or 'fmincon'.

Algorith
m

Algorithm used by 'lsgnonlin' or 'fmincon' search method. Omitted
when other search methods are used.

For estimation methods that do not require numerical search optimization, the
Termination field is omitted.

For more information on using Report, see “Estimation Report”.

1-39

1 Functions

1-40

ic — Initial conditions
initialCondition object | object array of initialCondition values

Estimated initial conditions, returned as an initialCondition object or an object array of
initialCondition values.

» For a single-experiment data set, ic represents, in state-space form, the free response of the
transfer function model (A and C matrices) to the estimated initial states (x,).

* For a multiple-experiment data set with N, experiments, ic is an object array of length N, that
contains one set of initialCondition values for each experiment.

If armax returns ic values of 0 and the you know that you have non-zero initial conditions, set the
'"InitialCondition' option in armaxOptions to 'estimate’ and pass the updated option set to
armax. For example:

opt = armaxOptions('InitialCondition, 'estimate')
[sys,ic] = armax(data,np,nz,opt)

The default 'auto' setting of 'InitialCondition' usesthe 'zero' method when the initial
conditions have a negligible effect on the overall estimation-error minimization process. Specifying
'estimate’ ensures that the software estimates values for ic.

For more information, see initialCondition. For an example of using this argument, see “Obtain
Initial Conditions” on page 1-35.

More About
ARMAX Model
The ARMAX (Autoregressive Moving Average with Extra Input) model structure is:
yt)+aqyt-1)+ ...+ anay(t —ng) =
bu(t —ng) + ... + bpu(t —ng —np + 1) +

cie(t = 1) + ... + cpe(t — ne) + e(t)

A more compact way to write the difference equation is
A(@)y(t) = B(q)u(t — ng) + C(q)e(t)

where

* y(t) — Output at time ¢

* ng — Number of poles

* np — Number of zeroes plus 1

* n, — Number of C coefficients

* nix — Number of input samples that occur before the input affects the output, also called the dead
time in the system

e y(t-1)..y(t — ng) — Previous outputs on which the current output depends

o u(t—ng)..u(t —ng —np + 1) — Previous and delayed inputs on which the current output depends

armax

* e(t—1)...e(t — n;) — White-noise disturbance value

The parameters na, nb, and nc are the orders of the ARMAX model, and nk is the delay. g is the delay
operator. Specifically,

AQ=1+aqqg + ...+ anaq_na

B(@ =by+byq t+ ...+ ban_"b+1

Clq=1+cigt+...+ cncq_nC

ARMA Time-Series Model

The ARMA (Autoregressive Moving Average) model is a special case of an "ARMAX Model” on page 1-
40 with no input channels. The ARMA single-output model structure is given by the following
equation:

ARIMAX Model

The ARIMAX (Autoregressive Integrated Moving Average with Extra Input) model structure is similar
to the ARMAX model, except that it contains an integrator in the noise source e(t):

A(q)y(t) = B(q)u(t — nk) + %e(n
(1-q7)
ARIMA Model

The ARIMA (Autoregressive Integrated Moving Average) model structure is a reduction of the
ARIMAX model with no inputs:

C(q)

AlQy(t) = ——
(@y(t) 1-aD

e(t)

Algorithms

An iterative search algorithm minimizes a robustified quadratic prediction error criterion. The
iterations are terminated when any of the following is true:

¢ Maximum number of iterations is reached.
* Expected improvement is less than the specified tolerance.
* Lower value of the criterion cannot be found.

You can get information about the stopping criteria using sys.Report.Termination.

Use the armaxOptions option set to create and configure options affecting the estimation results. In
particular, set the search algorithm attributes, such as MaxIterations and Tolerance, using the
'SearchOptions' property.

When you do not specify initial parameter values for the iterative search as an initial model, they are
constructed in a special four-stage LS-IV algorithm.

1-41

1 Functions

1-42

The cutoff value for the robustification is based on the Advanced.ErrorThreshold estimation
option and on the estimated standard deviation of the residuals from the initial parameter estimate.
The cutoff value is not recalculated during the minimization. By default, no robustification is
performed; the default value of ErrorThreshold option is 0.

To ensure that only models corresponding to stable predictors are tested, the algorithm performs a
stability test of the predictor. Generally, both C(q) and F(q) (if applicable) must have all zeros inside
the unit circle.

Minimization information is displayed on the screen when the estimation option 'Display'is 'On'
or 'Full'. When 'Display"' is 'Full', both the current and the previous parameter estimates are
displayed in column-vector form, and the parameters are listed in alphabetical order. Also, the values
of the criterion function (cost) are given and the Gauss-Newton vector and its norm are displayed.
When 'Display' is 'On', only the criterion values are displayed.

Alternatives

armax does not support continuous-time model estimation. Use tfest to estimate a continuous-time
transfer function model, or ssest to estimate a continuous-time state-space model.

armax supports only time-domain data. For frequency-domain data, use oe to estimate an Output-
Error (OE) model.

References

[1]1 Ljung, L. System Identification: Theory for the User, Second Edition. Upper Saddle River, NJ:
Prentice-Hall PTR, 1999. See chapter about computing the estimate.

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

Parallel computing support is available for estimation using the lsqgnonlin search method (requires
Optimization Toolbox™). To enable parallel computing, use armaxOptions, set SearchMethod to
"lsgnonlin', and set SearchOptions.Advanced.UseParallel to true.

For example:

opt = armaxOptions;
opt.SearchMethod = 'lsgnonlin';
opt.SearchOptions.Advanced.UseParallel = true;

See Also
aic | armaxOptions |arx|bj | compare | fpe| iddata | idpoly | oe | polyest | ssest | tfest

Topics

“What Are Polynomial Models?”

“What Are Time Series Models?”
“Estimate Models Using armax”
“Estimation Report”

“Loss Function and Model Quality Metrics”

armax

“Regularized Estimates of Model Parameters”
“Apply Initial Conditions when Simulating Identified Linear Models”

Introduced in R2006a

1-43

1 Functions

armaxOptions

Option set for armax

Syntax

opt
opt

armaxOptions
armaxOptions(Name,Value)

Description

armaxOptions creates the default options set for armax.

opt

opt = armaxOptions(Name,Value) creates an option set with the options specified by one or
more Name, Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

InitialCondition — Handling of initial conditions
'auto' (default) | 'zero' | 'estimate' | 'backcast'’

Handling of initial conditions during estimation, specified as one of the following values:

* 'zero' — The initial conditions are set to zero.
+ 'estimate' — The initial conditions are treated as independent estimation parameters.
* 'backcast' — The initial conditions are estimated using the best least squares fit.

 'auto' — The software chooses the method to handle initial conditions based on the estimation
data.

Focus — Error to be minimized
'prediction' (default) | 'simulation’

Error to be minimized in the loss function during estimation, specified as the comma-separated pair
consisting of 'Focus' and one of the following values:

* 'prediction' — The one-step ahead prediction error between measured and predicted outputs
is minimized during estimation. As a result, the estimation focuses on producing a good predictor
model.

* 'simulation' — The simulation error between measured and simulated outputs is minimized
during estimation. As a result, the estimation focuses on making a good fit for simulation of model
response with the current inputs.

The Focus option can be interpreted as a weighting filter in the loss function. For more information,
see “Loss Function and Model Quality Metrics”.

1-44

armaxOptions

WeightingFilter — Weighting prefilter
[1 (default) | vector | matrix | cell array | linear system

Weighting prefilter applied to the loss function to be minimized during estimation. To understand the
effect of WeightingFilter on the loss function, see “Loss Function and Model Quality Metrics”.

Specify WeightingFilter as one of the following values:

* [] — No weighting prefilter is used.

» Passbands — Specify a row vector or matrix containing frequency values that define desired
passbands. You select a frequency band where the fit between estimated model and estimation
data is optimized. For example, [wl,wh], where wl and wh represent lower and upper limits of a
passband. For a matrix with several rows defining frequency passbands,
[wll,wlh;w21,w2h;w31,w3h;...], the estimation algorithm uses the union of the frequency
ranges to define the estimation passband.

Passbands are expressed in rad/TimeUnit for time-domain data and in FrequencyUnit for
frequency-domain data, where TimeUnit and FrequencyUnit are the time and frequency units
of the estimation data.

» SISO filter — Specify a single-input-single-output (SISO) linear filter in one of the following ways:

* A SISO LTI model

« {A,B,C,D} format, which specifies the state-space matrices of a filter with the same sample
time as estimation data.

* {numerator,denominator} format, which specifies the numerator and denominator of the
filter as a transfer function with same sample time as estimation data.

This option calculates the weighting function as a product of the filter and the input spectrum
to estimate the transfer function.

EnforceStability — Control whether to enforce stability of model
false (default) | true

Control whether to enforce stability of estimated model, specified as the comma-separated pair
consisting of 'EnforceStability' and either true or false.

This option is not available for multi-output models with a non-diagonal A polynomial array.

Data Types: logical

EstimateCovariance — Control whether to generate parameter covariance data
true (default) | false

Controls whether parameter covariance data is generated, specified as true or false.

If EstimateCovariance is true, then use getcov to fetch the covariance matrix from the
estimated model.

Display — Specify whether to display the estimation progress
‘off' (default) | 'on'

Specify whether to display the estimation progress, specified as one of the following values:

* 'on' — Information on model structure and estimation results are displayed in a progress-viewer
window.

1-45

1 Functions

1-46

+ 'off' — No progress or results information is displayed.

InputOffset — Removal of offset from time-domain input data during estimation
[1 (default) | vector of positive integers | matrix

Removal of offset from time-domain input data during estimation, specified as the comma-separated
pair consisting of ' InputOffset' and one of the following:

* A column vector of positive integers of length Nu, where Nu is the number of inputs.
* [] — Indicates no offset.

* Nu-by-Ne matrix — For multi-experiment data, specify Input0ffset as an Nu-by-Ne matrix. Nu
is the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

OutputOffset — Removal of offset from time-domain output data during estimation
[1 (default) | vector | matrix

Removal of offset from time-domain output data during estimation, specified as the comma-separated
pair consisting of 'OQutputOffset' and one of the following:

* A column vector of length Ny, where Ny is the number of outputs.
* [] — Indicates no offset.

* Ny-by-Ne matrix — For multi-experiment data, specify OutputOffset as a Ny-by-Ne matrix. Ny is
the number of outputs, and Ne is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

Regularization — Options for regularized estimation of model parameters
structure

Options for regularized estimation of model parameters. For more information on regularization, see
“Regularized Estimates of Model Parameters”.

Regularization is a structure with the following fields:

* Lambda — Constant that determines the bias versus variance tradeoff.
Specify a positive scalar to add the regularization term to the estimation cost.
The default value of zero implies no regularization.

Default: 0
* R — Weighting matrix.

Specify a vector of nonnegative numbers or a square positive semi-definite matrix. The length
must be equal to the number of free parameters of the model.

For black-box models, using the default value is recommended. For structured and grey-box
models, you can also specify a vector of np positive numbers such that each entry denotes the
confidence in the value of the associated parameter.

The default value of 1 implies a value of eye(npfree), where npfree is the number of free
parameters.

armaxOptions

Default: 1
Nominal — The nominal value towards which the free parameters are pulled during estimation.

The default value of zero implies that the parameter values are pulled towards zero. If you are
refining a model, you can set the value to 'model’ to pull the parameters towards the parameter
values of the initial model. The initial parameter values must be finite for this setting to work.

Default: 0

SearchMethod — Numerical search method used for iterative parameter estimation
‘auto’ (default) | 'gn' | 'gna' | 'lm' | 'grad' | 'lsgnonlin' | 'fmincon'

Numerical search method used for iterative parameter estimation, specified as the comma-separated
pair consisting of 'SearchMethod' and one of the following:

'auto' — A combination of the line search algorithms, ‘gn', 'lm', 'gna’', and 'grad' methods
is tried in sequence at each iteration. The first descent direction leading to a reduction in
estimation cost is used.

'gn' — Subspace Gauss-Newton least squares search. Singular values of the Jacobian matrix less
than GnPinvConstant*eps*max(size(J))*norm(J) are discarded when computing the
search direction. J is the Jacobian matrix. The Hessian matrix is approximated as J7J. If there is no
improvement in this direction, the function tries the gradient direction.

'gna' — Adaptive subspace Gauss-Newton search. Eigenvalues less than gamma*max(sv) of the
Hessian are ignored, where sv contains the singular values of the Hessian. The Gauss-Newton
direction is computed in the remaining subspace. gamma has the initial value
InitialGnaTolerance (see Advanced in 'SearchOptions' for more information). This value
is increased by the factor LMStep each time the search fails to find a lower value of the criterion
in fewer than five bisections. This value is decreased by the factor 2*LMStep each time a search is
successful without any bisections.

'"lm' — Levenberg-Marquardt least squares search, where the next parameter value is -pinv(H
+d*I)*grad from the previous one. H is the Hessian, I is the identity matrix, and grad is the
gradient. d is a number that is increased until a lower value of the criterion is found.

'grad' — Steepest descent least squares search.

"lsgnonlin' — Trust-region-reflective algorithm of 1sqnonlin. Requires Optimization Toolbox
software.

"fmincon' — Constrained nonlinear solvers. You can use the sequential quadratic programming
(SQP) and trust-region-reflective algorithms of the fmincon solver. If you have Optimization
Toolbox software, you can also use the interior-point and active-set algorithms of the fmincon
solver. Specify the algorithm in the SearchOptions.Algorithm option. The fmincon algorithms
may result in improved estimation results in the following scenarios:

* Constrained minimization problems when there are bounds imposed on the model parameters.

¢ Model structures where the loss function is a nonlinear or non smooth function of the
parameters.

* Multi-output model estimation. A determinant loss function is minimized by default for multi-
output model estimation. fmincon algorithms are able to minimize such loss functions directly.
The other search methods such as 'lm' and 'gn' minimize the determinant loss function by
alternately estimating the noise variance and reducing the loss value for a given noise variance
value. Hence, the fmincon algorithms can offer better efficiency and accuracy for multi-output
model estimations.

1-47

1 Functions

SearchOptions — Option set for the search algorithm
search option set

Option set for the search algorithm, specified as the comma-separated pair consisting of
'SearchOptions' and a search option set with fields that depend on the value of SearchMethod.

1-48

armaxOptions

SearchOptions Structure When SearchMethod is Specified as 'gn', ‘gna’, 'lm', 'grad’, or

'auto’
Field Description Default
Name
Toleran |Minimum percentage difference between the current value of the loss 0.01
ce function and its expected improvement after the next iteration, specified as

a positive scalar. When the percentage of expected improvement is less

than Tolerance, the iterations stop. The estimate of the expected loss-

function improvement at the next iteration is based on the Gauss-Newton

vector computed for the current parameter value.
MaxIter |Maximum number of iterations during loss-function minimization, specified |20
ations |as a positive integer. The iterations stop when MaxIterations is reached

or another stopping criterion is satisfied, such as Tolerance.
Setting MaxIterations = 0 returns the result of the start-up procedure.

Use sys.Report.Termination.Iterations to get the actual number
of iterations during an estimation, where sys is an idtf model.

1-49

1 Functions

Field Description Default
Name
Advance |Advanced search settings, specified as a structure with the following fields:
d
Field Name |Description Default
GnPinvCons |Jacobian matrix singular value threshold, specified as a 10000
tant positive scalar. Singular values of the Jacobian matrix that
are smaller than
GnPinvConstant*max(size(J)*norm(J)*eps) are
discarded when computing the search direction.
Applicable when SearchMethodis 'gn'.
InitialGna [Initial value of gamma, specified as a positive scalar. 0.0001
Tolerance |Applicable when SearchMethod is 'gna’.
LMStartVal |Starting value of search-direction length d in the 0.001
ue Levenberg-Marquardt method, specified as a positive
scalar. Applicable when SearchMethod is 'lm"'.
LMStep Size of the Levenberg-Marquardt step, specified as a 2
positive integer. The next value of the search-direction
length d in the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when SearchMethod
is "lm"'.
MaxBisecti |Maximum number of bisections used for line search along |25
ons the search direction, specified as a positive integer.
MaxFunctio |Maximum number of calls to the model file, specified as a [Inf
nEvaluatio |positive integer. Iterations stop if the number of calls to
ns the model file exceeds this value.
MinParamet |Smallest parameter update allowed per iteration, 0
erChange specified as a nonnegative scalar.
RelativelIm |Relative improvement threshold, specified as a 0
provement |nonnegative scalar. Iterations stop if the relative
improvement of the criterion function is less than this
value.
StepReduct |Step reduction factor, specified as a positive scalar that is |2
ion greater than 1. The suggested parameter update is

reduced by the factor StepReduction after each try.
This reduction continues until MaxBisections tries are
completed or a lower value of the criterion function is
obtained.

StepReduction is not applicable for SearchMethod
"Im' (Levenberg-Marquardt method).

armaxOptions

SearchOptions Structure When SearchMethod is Specified as 'lsqnonlin’

Field Description Default
Name
Function |Termination tolerance on the loss function that the software le-5
Toleranc |minimizes to determine the estimated parameter values,
e specified as a positive scalar.
The value of FunctionTolerance is the same as that of
opt.SearchOptions.Advanced.TolFun.
StepTole |Termination tolerance on the estimated parameter values, le-6
rance specified as a positive scalar.
The value of StepTolerance is the same as that of
opt.SearchOptions.Advanced.TolX.
MaxItera |[Maximum number of iterations during loss-function 20
tions minimization, specified as a positive integer. The iterations stop
when MaxIterations is reached or another stopping criterion
is satisfied, such as FunctionTolerance.
The value of MaxIterations is the same as that of
opt.SearchOptions.Advanced.MaxIter.
Advanced |Advanced search settings, specified as an option set for Use

lsgnonlin.

For more information, see the Optimization Options table in
“Optimization Options” (Optimization Toolbox).

optimset('1lsgnonl
in') to create a
default option set.

1-51

1 Functions

SearchOptions Structure When SearchMethod is Specified as ' fmincon'

Field Name Description Default

Algorithm fmincon optimization ‘sqp'
algorithm, specified as one of
the following:

e 'sqgp' — Sequential
quadratic programming
algorithm. The algorithm
satisfies bounds at all
iterations, and it can recover
from NaN or Inf results. It is
not a large-scale algorithm.
For more information, see
“Large-Scale vs. Medium-
Scale Algorithms”
(Optimization Toolbox).

* ‘'trust-region-
reflective' — Subspace
trust-region method based
on the interior-reflective
Newton method. It is a large-
scale algorithm.

 ‘'interior-point' —
Large-scale algorithm that
requires Optimization
Toolbox software. The
algorithm satisfies bounds at
all iterations, and it can
recover from NaN or Inf
results.

e 'active-set' — Requires
Optimization Toolbox
software. The algorithm can
take large steps, which adds
speed. It is not a large-scale
algorithm.

For more information about the
algorithms, see “Constrained
Nonlinear Optimization
Algorithms” (Optimization
Toolbox) and “Choosing the
Algorithm” (Optimization
Toolbox).

1-52

armaxOptions

Field Name Description Default

FunctionTolerance Termination tolerance on the le-6

loss function that the software
minimizes to determine the
estimated parameter values,
specified as a positive scalar.

StepTolerance Termination tolerance on the le-6

estimated parameter values,
specified as a positive scalar.

MaxIterations Maximum number of iterations |100

during loss function
minimization, specified as a
positive integer. The iterations
stop when MaxIterations is
reached or another stopping
criterion is satisfied, such as
FunctionTolerance.

Advanced — Additional advanced options
structure

Additional advanced options, specified as a structure with the following fields:

ErrorThreshold — Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight
in the loss function. The standard deviation is estimated robustly as the median of the absolute
deviations from the median of the prediction errors and divided by 0. 7. For more information on
robust norm choices, see section 15.2 of [2].

ErrorThreshold = 0 disables robustification and leads to a purely quadratic loss function.
When estimating with frequency-domain data, the software sets ErrorThreshold to zero. For
time-domain data that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0

MaxSize — Specifies the maximum number of elements in a segment when input-output data is
split into segments.

MaxSize must be a positive integer.

Default: 250000
StabilityThreshold — Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

* s — Specifies the location of the right-most pole to test the stability of continuous-time models.
A model is considered stable when its right-most pole is to the left of s.

Default: 0

* z — Specifies the maximum distance of all poles from the origin to test stability of discrete-
time models. A model is considered stable if all poles are within the distance z from the origin.

1-53

1 Functions

Default: 1+sqrt(eps)
* AutoInitThreshold — Specifies when to automatically estimate the initial condition.

The initial condition is estimated when

|Vp, 2 — Ymeas|

> AutolnitThreshold
1Yo, e = Ymeas||

* Vmeas 1S the measured output.
* Y, is the predicted output of a model estimated using zero initial conditions.
* Vpeis the predicted output of a model estimated using estimated initial conditions.

Applicable when InitialConditionis 'auto'.

Default: 1.05

Output Arguments

opt — Options set for armax
armaxOptions option set

Option set for armax, returned as an armaxOptions option set.

Examples

Create Default Options Set for ARMAX Estimation

opt = armaxOptions;

Specify Options for ARMAX Estimation

Create an option set for armax to use the 'simulation' Focus and to set the Display to 'on'.
opt = armaxOptions('Focus', 'simulation', 'Display', 'on');

Alternatively, use dot notation to set the values of opt.

opt = armaxOptions;

opt.Focus = 'simulation';

opt.Display = 'on';

Compatibility Considerations

Renaming of Estimation and Analysis Options

The names of some estimation and analysis options were changed in R2018a. Prior names still work.

For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

armaxOptions

References

[1] Wills, Adrian, B. Ninness, and S. Gibson. “On Gradient-Based Search for Multivariable System
Estimates”. Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3-8,
2005. Oxford, UK: Elsevier Ltd., 2005.

[2] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR,
1999.

See Also
armax | idfilt

Topics
“Loss Function and Model Quality Metrics”

Introduced in R2012a

1-55

1 Functions

arOptions

Option set for ar

Syntax
opt = arOptions
opt = arOptions(Name,Value)

Description
opt = arOptions creates the default options set for ar.

opt = arOptions(Name,Value) creates an option set with the options specified by one or more
Name, Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Approach
Technique used for AR model estimation.
Approach is specified as one of the following values:

o« 'fb' — Forward-backward approach.
* 'ls' — Least-squares method.

* 'yw' — Yule-Walker approach.

* 'burg' — Burg’s method.

* 'gl' — Geometric lattice method.

Default: 'fb'
Window
Data windowing technique.

Window determines how the data outside the measured time interval (past and future values) is
handled.

Window is specified as one of the following values:

* 'now' — No windowing.
* 'prw' — Pre-windowing.

1-56

arOptions

* 'pow' — Post-windowing.
* 'ppw' — Pre- and post-windowing.

This option is ignored when you use the Yule-Walker approach.
Default: 'now'

DataOffset

Data offset level that is removed before estimation of parameters.

Specify DataOffset as a double scalar. For multiexperiment data, specify DataOffset as a vector
of length Ne, where Ne is the number of experiments. Each entry of the vector is subtracted from the
corresponding data.

Default: [] (no offsets)
MaxSize

Specifies the maximum number of elements in a segment when input/output data is split into
segments.

If larger matrices are needed, the software uses loops for calculations. Use this option to manage the
trade-off between memory management and program execution speed. The original data matrix must
be smaller than the matrix specified by MaxSize.

MaxSize must be a positive integer.

Default: 250000

Output Arguments
opt

Option set containing the specified options for ar.

Examples

Create Default Options Set for AR Estimation

opt = arOptions;

Specify Options for AR Estimation
Create an options set for ar using the least squares algorithm for estimation. Set Window to 'ppw"'.
opt = arOptions('Approach','ls"', 'Window', 'ppw');

Alternatively, use dot notation to set the values of opt.

1-57

1 Functions

1-58

opt = arOptions;
opt.Approach = 'ls';
opt.Window = 'ppw';

See Also
ar

Introduced in R2012a

arx

arx

Estimate parameters of ARX, ARIX, AR, or ARI model

Syntax

arx(data, [na nb nkl)

Sys (
arx(data, [na nb nk]l,Name,Value)
(

Sys
Sys
[sys,ic]

arx(data, [na nb nk], ,opt)
arx()

Description

sys = arx(data,[na nb nk]) estimates the parameters of an ARX on page 1-67 or an AR on
page 1-68 idpoly model sys using a least-squares method and the polynomial orders specified in
[na nb nk]. The model properties include covariances (parameter uncertainties) and goodness of fit
between the estimated and measured data.

sys = arx(data,[na nb nk],Name,Value) specifies additional options using one or more name-
value pair arguments. For instance, using the name-value pair argument 'IntegrateNoise',1
estimates an ARIX on page 1-68 or ARI structure model, which is useful for systems with
nonstationary disturbances.

sys = arx(data, [na nb nk], ,opt) specifies estimation options using the option set opt.
Specify opt after all other input arguments.

[sys,ic] = arx(___) returns the estimated initial conditions as an initialCondition object.
Use this syntax if you plan to simulate or predict the model response using the same estimation input
data and then compare the response with the same estimation output data. Incorporating the initial
conditions yields a better match during the first part of the simulation.

Examples

ARX Model
Generate output data based on a specified ARX model and use the output data to estimate the model.

Specify a polynomial model sys0 with the ARX structure. The model includes an input delay of one
sample, expressed as a leading zero in the B polynomial.

A [1 -1.5 0.7];
B=1[010.5];
sys@ = idpoly(A,B);

Generate a measured input signal u that contains random binary noise and an error signal e that
contains normally distributed noise. With these signals, simulate the measured output signal y of
syso0.

iddata([],idinput (300, 'rbs'));
iddata([],randn(300,1));
sim(sys0,[u e]);

u
e

y

1-59

1 Functions

1-60

Combine y and u into a single iddata object z. Estimate a new ARX model using z and the same
polynomial orders and input delay as the original model.

sys =

Discrete-time ARX model: A(z)y(t) = B(z)u(t) + e(t)
A(z) =1 - 1.524 z~-1 + 0.7134 z"-2
B(z) = z°-1 + 0.4748 z"-2

Sample time: 1 seconds

Parameterization:

Polynomial orders: na=2 nb=2 nk=1

Number of free coefficients: 4

Use "polydata", "getpvec", "getcov" for parameters and their uncertainties.
Status:

Estimated using ARX on time domain data "z".
Fit to estimation data: 81.36% (prediction focus)
FPE: 1.025, MSE: 0.9846

The output displays the polynomial containing the estimated parameters alongside other estimation
details. Under Status, Fit to estimation data shows that the estimated model has 1-step-
ahead prediction accuracy above 80%.

AR Model
Estimate a time-series AR model using the arx function. An AR model has no measured input.

Load the data, which contains the time series z9 with noise.

load iddata9 z9

Estimate a fourth-order AR model by specifying only the na orderin [na nb nk].

sys = arx(z9,4);

Examine the estimated A polynomial parameters and the fit of the estimate to the data.
param = sys.Report.Parameters.ParVector

param = 4x1

.7923
.4780
.0921
.4698

o
[cNoNoNO]

fit = sys.Report.Fit.FitPercent
fit = 79.4835

arx

ARIX Model
Estimate the parameters of an ARIX model. An ARIX model is an ARX model with integrated noise.

Specify a polynomial model sys0 with an ARX structure. The model includes an input delay of one
sample, expressed as a leading zero in B.

[1 -1.5 0.7];

[0 10.5];

ysO = idpoly(A,B);

Simulate the output signal of sys0 using the random binary input signal u and the normally
distributed error signal e.

u
e

y

iddata([],idinput (300, 'rbs'));
iddata([],randn(300,1));
sim(sys0,[u e]);

Integrate the output signal and store the result yi in the iddata object z1i.

iddata(cumsum(y.y),[1);

yi
zi [yi,ul;

1

Estimate an ARIX model from zi. Set the name-value pair argument 'IntegrateNoise' to true.
sys = arx(zi,[2 2 1], 'IntegrateNoise', true);

Predict the model output using 5-step prediction and compare the result with yi.

compare(zi,sys,5)

1-61

1 Functions

5-Step Predicted Response Comparison
150 - - . . ;

] zZi(y1})
sys: 76.25% | |

100 [A

Amplitude
¥

-100 | N

-200 ' '
50 100 150 200 250 300
Time (seconds)

ARX Model with Regularization

Use arxRegul to determine regularization constants automatically and use the values for estimating
an FIR model with an order of 50.

Obtain the lambda and R values.

load regularizationExampleData eData;

orders = [0 50 0];

[lambda,R] = arxRegul(eData,orders);

Use the returned lambda and R values for regularized ARX model estimation.
opt = arxOptions;

opt.Regularization.Lambda = lambda;

opt.Regularization.R = R;
sys = arx(eData,orders,opt);

Obtain Initial Conditions

Load the data.

1-62

arx

load iddatalic z1li

Estimate a second-order ARX model sys and return the initial conditions in ic.

5 3 S
X oo
I nu

2
2
1
1

é] = arx(z1li, [na nb nk]);

e —
O un
<
(%)

ic =
initialCondition with properties:

A: [2x2 double]
X0: [2x1 double]
C: [0 2]
Ts: 0.1000

icisan initialCondition object that encapsulates the free response of sys, in state-space form,
to the initial state vector in X0. You can incorporate ic when you simulate sys with the z1i input
signal and compare the response with the z11i output signal.

Input Arguments

data — Estimation data
iddata ohject | frd object | idfrd ohject

Estimation data, specified as an iddata object, an frd object, or an idfrd frequency-response
object. For AR and ARI time-series models, the input channel in data must be empty.

[na nb nk] — Polynomial orders and delays
integer row vector | row vector of integer matrices | scalar

Polynomial orders and delays for the model, specified as a 1-by-3 vector or vector of matrices [na nb
nk]. The polynomial order is equal to the number of coefficients to estimate in that polynomial.

For an AR or ARI time-series model, which has no input, set [na nb nk] to the scalar na. For an
example, see “AR Model” on page 1-60.

For a model with N, outputs and N, inputs:

* nais the order of polynomial A(q), specified as an N,-by-N, matrix of nonnegative integers.

* nb is the order of polynomial B(q) + 1, specified as an N,-by-N, matrix of nonnegative integers.

* nkis the input-output delay, also known as the transport delay, specified as an N,-by-N, matrix of
nonnegative integers. nk is represented in ARX models by fixed leading zeros in the B polynomial.
For instance, suppose that without transport delays, sys.bis [5 6].

* Because sys.b + 1is a second-order polynomial, nb = 2.

* Specify a transport delay of nk = 3. Specifying this delay adds three leading zeros to sys.b so
that sys.bisnow [0 @ © 5 6], while nb remains equal to 2.

» These coefficients represent the polynomial B(q) = 5 g3 + 6q*.

1-63

1 Functions

1-64

You can also implement transport delays using the name-value pair argument 'IODelay'.

Example: arx(data,[2 1 1]) computes, from an iddata object, a second-order ARX model with
one input channel that has an input delay of one sample.

opt — Estimation options
arxOptions option set

Estimation options for ARX model identification, specified as an arOptions option set. Options
specified by opt include the following:

* [Initial condition handling — Use this option only for frequency-domain data. For time-domain data,
the signals are shifted such that unmeasured signals are never required in the predictors.

* Input and output data offsets — Use these options to remove offsets from time-domain data during
estimation.

* Regularization — Use this option to control the tradeoff between bias and variance errors during
the estimation process.

For more information, see arxOptions. For an example, see “ARX Model with Regularization” on
page 1-62.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: 'IntegrateNoise', true adds an integrator in the noise source s

InputDelay — Input delays
0 (default) | integer scalar | positive integer vector

Input delays expressed as integer multiples of the sample time, specified as the comma-separated
pair consisting of ' InputDelay' and one of the following:

* N,by-1 vector, where N, is the number of inputs — Each entry is a numerical value representing
the input delay for the corresponding input channel.
* Scalar value — Apply the same delay to all input channels.

Example: arx(data,[2 1 3], 'InputDelay', 1) estimates a second-order ARX model with one
input channel that has an input delay of three samples.

I0Delay — Transport delays
0 (default) | integer scalar | integer array

Transport delays for each input-output pair, expressed as integer multiples of the sample time, and
specified as the comma-separated pair consisting of ' I0Delay' and one of the following:

* N,-by-N, matrix, where N, is the number of outputs and N, is the number of inputs — Each entry
is an integer value representing the transport delay for the corresponding input-output pair.

* Scalar value — Apply the same delay is applied to all input-output pairs. This approach is useful
when the input-output delay parameter nk results in a large number of fixed leading zeros in the B

arx

polynomial. You can factor out max (nk-1,0) lags by moving those lags from nk into the
'I0Delay' value.

For instance, suppose that you have a system with two inputs, where the first input has a delay of
three samples and the second input has a delay of six samples. Also suppose that the B
polynomials for these inputs are order n. You can express these delays using the following:

* nk=[3 6] — This results in B polynomials of [0 © 0 b1l ... bln]J]and [0 0 0 O ©@ O
b21 ... b2n].

* nk=1[3 6] and 'IODelay',3 — This results in B polynomials of [b11 ... bln] and [0 O
0 b21 ... b2n].

IntegrateNoise — Addition of integrators in noise channel
false (default) | logical vector

Addition of integrators in the noise channel, specified as the comma-separated pair consisting of
'"IntegrateNoise’ and a logical vector of length Ny, where Ny is the number of outputs.

Setting 'IntegrateNoise' to true for a particular output creates an ARIX on page 1-68 or ARI
model for that channel. Noise integration is useful in cases where the disturbance is nonstationary.

When using 'IntegrateNoise', you must also integrate the output channel data. For an example,
see “ARIX Model” on page 1-61.

Output Arguments

sys — ARX model
idpoly object

ARX model that fits the estimation data, returned as a discrete-time idpoly object. This model is
created using the specified model orders, delays, and estimation options.

Information about the estimation results and options used is stored in the Report property of the
model. Report has the following fields.

Report Description

Field

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method Estimation command used.

InitialCo |Handling of initial conditions during model estimation, returned as one of the following
ndition |values:
* 'zero' — The initial conditions were set to zero.

* ‘'estimate' — The initial conditions were treated as independent estimation
parameters.

This field is especially useful to view how the initial conditions were handled when the
InitialCondition option in the estimation option setis 'auto’.

1-65

1 Functions

1-66

Report Description
Field
Fit Quantitative assessment of the estimation, returned as a structure. See “Loss Function
and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:
Field Description
FitPerce |Normalized root mean squared error (NRMSE) measure of how well the
nt response of the model fits the estimation data, expressed as the
percentage fit = 100(1-NRMSE).
LossFcn |Value of the loss function when the estimation completes.
MSE Mean squared error (MSE) measure of how well the response of the
model fits the estimation data.
FPE Final prediction error for the model.
AIC Raw Akaike Information Criteria (AIC) measure of model quality.
AICc Small sample-size corrected AIC.
nAIC Normalized AIC.
BIC Bayesian Information Criteria (BIC).
Parameter |Estimated values of model parameters.
S
OptionsUs |Option set used for estimation. If no custom options were configured, this is a set of
ed default options. See arxOptions for more information.
RandState |State of the random number stream at the start of estimation. Empty, [], if

randomization was not used during estimation. For more information, see rng.

arx

Report Description

Field
DataUsed |Attributes of the data used for estimation, returned as a structure with the following
fields:
Field Description
Name Name of the data set.
Type Data type.

Length Number of data samples.

Ts Sample time.

InterSam |Input intersample behavior, returned as one of the following values:

ple o : : . :
* 'zoh' — Zero-order hold maintains a piecewise-constant input signal

between samples.

» 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.

* 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.

InputOff |Offset removed from time-domain input data during estimation. For
set nonlinear models, itis [].

OQutputOf |Offset removed from time-domain output data during estimation. For
fset nonlinear models, it is [].

For more information on using Report, see “Estimation Report”.

ic — Initial conditions
initialCondition object | object array of initialCondition values

Estimated initial conditions, returned as an initialCondition object or an object array of
initialCondition values.

» For a single-experiment data set, ic represents, in state-space form, the free response of the
transfer function model (A and C matrices) to the estimated initial states (x,).

* For a multiple-experiment data set with N, experiments, ic is an object array of length N, that
contains one set of initialCondition values for each experiment.

For more information, see initialCondition. For an example of using this argument, see “Obtain
Initial Conditions” on page 1-62.

More About

ARX Structure

The ARX model name stands for Autoregressive with Extra Input, because, unlike the AR model, the
ARX model includes an input term. ARX is also known as Autoregressive with Exogenous Variables,

where the exogenous variable is the input term. The ARX model structure is given by the following
equation:

1-67

1 Functions

1-68

V&) + ayt = 1) + ... + apgy(t — na) =
biu(t — nk) + ... + bppu(t —nb —nk + 1) + e(t)

The parameters na and nb are the orders of the ARX model, and nk is the delay.

¢ y(t) — Output at time ¢
* n, — Number of poles
* np — Number of zeros

* nx — Number of input samples that occur before the input affects the output, also called the dead
time in the system

e y(t-1)..y(t — ng) — Previous outputs on which the current output depends
o u(t—ng)...u(t —ng —np + 1) — Previous and delayed inputs on which the current output depends

e ¢(t) — White-noise disturbance value

A more compact way to write the difference equation is
A(@)y(t) = B(q)u(t — ng) + e(t)

q is the delay operator. Specifically,
AQ=1+aqqg +...+ anaq_n“

B(q) = by +byq ' + ...+ byg ™!

ARIX Model

The ARIX (Autoregressive Integrated with Extra Input) model is an ARX model with an integrator in
the noise channel. The ARIX model structure is given by the following equation:

A(q)y(t) = B(q@)u(t — nk) +
1-¢q

where

. — is the integrator in the noise channel, e(t).
- q
AR Time-Series Models

For time-series data that contains no inputs, one output, and the A polynomial order na, the model
has an AR structure of order na.

The AR (Autoregressive) model structure is given by the following equation:

ARI Model

The ARI (Autoregressive Integrated) model is an AR model with an integrator in the noise channel.
The ARI model structure is given by the following equation:

arx

Multiple-Input, Single-Output Models

For multiple-input, single-output systems (MISO) with nu inputs, nb and nk are row vectors where the
ith element corresponds to the order and delay associated with the ith input in column vector u(t).
Similarly, the coefficients of the B polynomial are row vectors. The ARX MISO structure is then given
by the following equation:

A(q)y(t) = Bi(q)uy(t — nky) + Ba(q)up(t — nky) + - + Buy(q@)uny(t — nkny)
Multiple-Input, Multiple-Output Models
For multiple-input, multiple-output systems, na, nb, and nk contain one row for each output signal.

In the multiple-output case, arx minimizes the trace of the prediction error covariance matrix, or the
norm

To transform this norm to an arbitrary quadratic norm using a weighting matrix Lambda
N 1
S eT()A™ e(t)
t=1
use the following syntax:

opt = arxOptions('OutputWeight',inv(lambda))
m = arx(data,orders,opt)

Initial Conditions

For time-domain data, the signals are shifted such that unmeasured signals are never required in the
predictors. Therefore, there is no need to estimate initial conditions.

For frequency-domain data, it might be necessary to adjust the data by initial conditions that support
circular convolution.

Set the 'InitialCondition' estimation option (see arxOptions) to one of the following values:

* 'zero' — No adjustment

+ 'estimate' — Perform adjustment to the data by initial conditions that support circular
convolution

* 'auto' — Automatically choose 'zero' or 'estimate’' based on the data
Algorithms

QR factorization solves the overdetermined set of linear equations that constitutes the least-squares
estimation problem.

Without regularization, the ARX model parameters vector 0 is estimated by solving the normal
equation

(J7)e=1"y

1-69

1 Functions

where J is the regressor matrix and y is the measured output. Therefore,
-1
0= Iy
Using regularization adds the regularization term
-1
6=("7+2R) J'y

where A and R are the regularization constants. For more information on the regularization constants,
see arxOptions.

When the regression matrix is larger than the MaxSize specified in arxOptions, the data is
segmented and QR factorization is performed iteratively on the data segments.

See Also
ar | armax | arxOptions | arxRegul | arxstruc | iddata | idfrd | idinput | iv4

Topics

“What Are Polynomial Models?”

“What Are Time Series Models?”

“Estimate Polynomial Models at the Command Line”

“Regularized Estimates of Model Parameters”

“Estimating Models Using Frequency-Domain Data”

“Apply Initial Conditions when Simulating Identified Linear Models”

Introduced before R2006a

arxOptions

arxOptions

Option set for arx

Syntax

opt arxOptions
opt = arxOptions(Name,Value)

Description

opt = arx0ptions creates the default options set for arx.

opt = arxOptions(Name,Value) creates an option set with the options specified by one or more
Name, Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

InitialCondition — Handling of initial conditions
'auto' (default) | 'zero' | 'estimate’

Handling of initial conditions during estimation using frequency-domain data, specified as the
comma-separated pair consisting of 'InitialCondition' and one of the following values:

* ‘'zero' — The initial conditions are set to zero.

+ 'estimate' — The initial conditions are treated as independent estimation parameters.

e 'auto' — The software chooses the method to handle initial conditions based on the estimation
data.

Focus — Error to be minimized
‘prediction’ (default) | 'simulation’

Error to be minimized in the loss function during estimation, specified as the comma-separated pair
consisting of 'Focus' and one of the following values:

* 'prediction' — The one-step ahead prediction error between measured and predicted outputs
is minimized during estimation. As a result, the estimation focuses on producing a good predictor
model.

* 'simulation' — The simulation error between measured and simulated outputs is minimized
during estimation. As a result, the estimation focuses on making a good fit for simulation of model
response with the current inputs.

The Focus option can be interpreted as a weighting filter in the loss function. For more information,
see “Loss Function and Model Quality Metrics”.

1-71

1 Functions

1-72

WeightingFilter — Weighting prefilter
[1 (default) | vector | matrix | cell array | linear system

Weighting prefilter applied to the loss function to be minimized during estimation. To understand the
effect of WeightingFilter on the loss function, see “Loss Function and Model Quality Metrics”.

Specify WeightingFilter as one of the following values:

* [] — No weighting prefilter is used.

» Passbands — Specify a row vector or matrix containing frequency values that define desired
passbands. You select a frequency band where the fit between estimated model and estimation
data is optimized. For example, [wl,wh] where wl and wh represent lower and upper limits of a
passband. For a matrix with several rows defining frequency passbands,
[wll,wlh;w21,w2h;w31,w3h;...], the estimation algorithm uses the union of the frequency
ranges to define the estimation passband.

Passbands are expressed in rad/TimeUnit for time-domain data and in FrequencyUnit for
frequency-domain data, where TimeUnit and FrequencyUnit are the time and frequency units
of the estimation data.

» SISO filter — Specify a single-input-single-output (SISO) linear filter in one of the following ways:

¢ A SISO LTT model

+ {A,B,C,D} format, which specifies the state-space matrices of a filter with the same sample
time as estimation data.

* {numerator,denominator} format, which specifies the numerator and denominator of the
filter as a transfer function with same sample time as estimation data.
This option calculates the weighting function as a product of the filter and the input spectrum
to estimate the transfer function.

* Weighting vector — Applicable for frequency-domain data only. Specify a column vector of
weights. This vector must have the same length as the frequency vector of the data set,
Data.Frequency. Each input and output response in the data is multiplied by the corresponding
weight at that frequency.

EnforceStability — Control whether to enforce stability of model
false (default) | true

Control whether to enforce stability of estimated model, specified as the comma-separated pair
consisting of 'EnforceStability' and either true or false.

This option is not available for multi-output models with a non-diagonal A polynomial array.

Data Types: Logical

EstimateCovariance — Control whether to generate parameter covariance data
true (default) | false

Controls whether parameter covariance data is generated, specified as true or false.

If EstimateCovariance is true, then use getcov to fetch the covariance matrix from the
estimated model.

Display — Specify whether to display the estimation progress
"off' (default) | 'on'

arxOptions

Specify whether to display the estimation progress, specified as one of the following values:

* 'on' — Information on model structure and estimation results are displayed in a progress-viewer
window.

« 'off' — No progress or results information is displayed.

InputOffset — Removal of offset from time-domain input data during estimation
[1 (default) | vector of positive integers | matrix

Removal of offset from time-domain input data during estimation, specified as the comma-separated

pair consisting of ' InputOffset' and one of the following:

* A column vector of positive integers of length Nu, where Nu is the number of inputs.

* [] — Indicates no offset.

* Nu-by-Ne matrix — For multi-experiment data, specify InputO0ffset as an Nu-by-Ne matrix. Nu
is the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

OutputOffset — Removal of offset from time-domain output data during estimation
[1 (default) | vector | matrix

Removal of offset from time-domain output data during estimation, specified as the comma-separated

pair consisting of 'QutputOffset' and one of the following:

* A column vector of length Ny, where Ny is the number of outputs.

* [] — Indicates no offset.

* Ny-by-Ne matrix — For multi-experiment data, specify OutputOffset as a Ny-by-Ne matrix. Ny is
the number of outputs, and Ne is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

OutputWeight — Weight of prediction errors in multi-output estimation
[1 (default) | positive semidefinite, symmetric matrix

Weight of prediction errors in multi-output estimation, specified as one of the following values:

* Positive semidefinite, symmetric matrix (W). The software minimizes the trace of the weighted
prediction error matrix trace (E'*E*W/N) where:

* E is the matrix of prediction errors, with one column for each output, and W is the positive
semidefinite, symmetric matrix of size equal to the number of outputs. Use W to specify the
relative importance of outputs in multiple-output models, or the reliability of corresponding
data.

* N is the number of data samples.

* [] — No weighting is used. Specifying as [] is the same as eye (Ny), where Ny is the number of
outputs.

This option is relevant only for multi-output models.

Regularization — Options for regularized estimation of model parameters
[] (default) | positive semidefinite, symmetric matrix

1-73

1 Functions

Options for regularized estimation of model parameters, specified as a structure with the following
fields:

* Lambda — Constant that determines the bias versus variance tradeoff.
Specify a positive scalar to add the regularization term to the estimation cost.
The default value of zero implies no regularization.

Default: 0
* R — Weighting matrix.

Specify a positive scalar or a positive definite matrix. The length of the matrix must be equal to
the number of free parameters (np) of the model. For ARX model, np = sum(sum([na nb]).

Default: 1
* Nominal — This option is not used for ARX models.

Default: 0
Use arxRegul to automatically determine Lambda and R values.
For more information on regularization, see “Regularized Estimates of Model Parameters”.

Advanced — Additional advanced options
structure

Additional advanced options, specified as a structure with the following fields:

* MaxSize — Specifies the maximum number of elements in a segment when input-output data is
split into segments.

MaxSize must be a positive integer.

Default: 250000
+ StabilityThreshold — Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

* s — Specifies the location of the right-most pole to test the stability of continuous-time models.
A model is considered stable when its right-most pole is to the left of s.

Default: 0

* z — Specifies the maximum distance of all poles from the origin to test stability of discrete-
time models. A model is considered stable if all poles are within the distance z from the origin.

Default: 1+sqrt(eps)

Output Arguments

opt — Options set for arx
arxOptions option set

Option set for arx, returned as an arxOptions option set.

arxOptions

Examples

Create Default Options Set for ARX Estimation

opt = arxOptions;

Specify Options for ARX Estimation

Create an options set for arx using zero initial conditions for estimation. Set Display to 'on".
opt = arxOptions('InitialCondition','zero', 'Display','on');

Alternatively, use dot notation to set the values of opt.

opt = arxOptions;

opt.InitialCondition = 'zero';

opt.Display = 'on';

Compatibility Considerations
Renaming of Estimation and Analysis Options

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

See Also
arx | arxRegul | idfilt

Topics
“Loss Function and Model Quality Metrics”

Introduced in R2012a

1-75

1 Functions

1-76

arxRequl

Determine regularization constants for ARX model estimation
Syntax

[lambda,R] = arxRegul(data,orders)

[lambda,R] = arxRegul(data,orders,options)

[lambda,R] = arxRegul(data,orders,Name,Value)
[lambda,R] = arxRegul(data,orders,options,Name,Value)
Description

[lambda,R] = arxRegul(data,orders) returns the regularization constants used for ARX model
estimation. Use the regularization constants in arxOptions to configure the regularization options
for ARX model estimation.

[lambda,R] = arxRegul(data,orders,options) specifies regularization options such as
regularization kernel and I/O offsets.

[lambda,R] = arxRegul(data,orders,Name,Value) specifies model structure attributes, such
as noise integrator and input delay, using one or more Name, Value pair arguments.

[lambda,R] = arxRegul(data,orders,options,Name,Value) specifies both regularization
options and model structure attributes.

Examples

Determine Regularization Constants for ARX Model Estimation Using Default Kernel

load iddatal z1;
orders = [10 10 1];
[Lambda,R] = arxRegul(zl,orders);

The ARX model is estimated using the default regularization kernel TC.
Use the Lambda and R values for ARX model estimation.

opt = arxOptions;

opt.Regularization.Lambda = Lambda;

opt.Regularization.R = R;
model = arx(zl,orders,opt);

Specify a Regularization Kernel

Specify 'DC' as the regularization kernel and obtain a regularized ARX model of order [[10 10 1|].

load iddatal z1;
orders = [10 10 1];

arxRegul

option = arxRegulOptions('RegularizationKernel','DC");
[Lambda,R] = arxRegul(zl,orders,option);

Use the Lambda and R values for ARX model estimation.
arxOpt = arxOptions;
arxOpt.Regularization.Lambda = Lambda;

arxOpt.Regularization.R = R;
model = arx(zl,orders,arx0pt);

Specify Noise Source Integrator

Specify to include a noise source integrator in the noise component of the model.

load iddatal z1;
orders = [10 10 1];
[Lambda,R] = arxRegul(zl,orders, 'IntegrateNoise’', true);

Specify Regularization Kernel And Noise Integrator

Specify the regularization kernel and include a noise source integrator in the noise component of the
model.

load iddatal z1;

orders = [10 10 1];

opt = arxRegulOptions('RegularizationKernel', 'DC");
[Lambda,R] = arxRegul(zl,orders,opt, 'IntegrateNoise',true);

Input Arguments

data — Estimation data
iddata object

Estimation data, specified as an iddata object.

orders — ARX model orders
matrix of nonnegative integers

ARX model orders [na nb nc], specified as a matrix of nonnegative integers. See the arx reference
page for more information on model orders.

options — Regularization options
arxRegulOptions options set

Regularization options, specified as an options set you create using arxRegulOptions.
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

1-77

1 Functions

1-78

Example: [Lambda, R] = arxRegul(zl,orders,option, 'InputDelay',10);

InputDelay — Input delay
0 (default) | positive integer

Input delay, specified as a positive, nonzero numeric value representing the number of samples.
Example: [Lambda, R] = arxRegul(zl,orders, 'InputDelay',10);
Data Types: double

IntegrateNoise — Noise source integrator
false (default) | true

Noise source integrator, specified as a logical. Specifies whether the noise source e(t) should

contain an integrator. The default is false, indicating the noise integrator is off. To turn it on, change
the value to true.

Example: [Lambda, R] = arxRegul(zl,orders, 'IntegrateNoise', true);
Data Types: logical

Output Arguments

lambda — Constant that determines bias versus variance trade-off
positive scalar

Constant that determines the bias versus variance trade-off, returned as a positive scalar.

R — Weighting matrix
vector of nonnegative numbers | square positive semi-definite matrix

Weighting matrix, returned as a vector of nonnegative numbers or a positive definite matrix.

Algorithms

Without regularization, the ARX model parameters vector 0 is estimated by solving the normal
equation

(J7)e=r"y

where J is the regressor matrix and y is the measured output. Therefore,
-1

0= Iy

Using regularization adds the regularization term

6=(/T7+aR) " JTy

where A and R are the regularization constants. For more information on the regularization constants,
see arxOptions.

arxRegul

References

[1] T. Chen, H. Ohlsson, and L. Ljung. “On the Estimation of Transfer Functions, Regularizations and
Gaussian Processes - Revisited”, Automatica, Volume 48, August 2012.

See Also
arx | arxOptions | arxRegulOptions
Topics

“Estimate Regularized ARX Model Using System Identification App”
“Regularized Estimates of Model Parameters”

Introduced in R2013b

1-79

1 Functions

1-80

arxReqgulOptions

Option set for arxRegul

Syntax

opt
opt

arxRegulOptions
arxRegulOptions(Name,Value)

Description

opt = arxRegulOptions creates a default option set for arxRegul.

opt arxRegulOptions(Name,Value) creates an options set with the options specified by one or
more name-value pair arguments.

Examples

Create Default Options Set for Determining Regularization Constants

opt = arxRegulOptions;

Specify Regularizing Kernel for ARX Model Estimation

opt = arxRegulOptions('RegularizationKernel', 'DC");

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

Example: option = arxRegulOptions('RegularizationKernel', 'DC') specifies 'DC"' as
the regularization kernel.

RegularizationKernel — Regularization kernel
'TC' (default) | 'SE' | 'SS' | 'HF' | 'DI' | 'DC'

Regularization kernel, specified as one of the following values:

* 'TC' — Tuned and correlated kernel
* 'SE' — Squared exponential kernel
* 'SS' — Stable spline kernel

arxRegulOptions

* 'HF' — High frequency stable spline kernel

* 'DI' — Diagonal kernel

* 'DC' — Diagonal and correlated kernel

The specified kernel is used for regularized estimation of impulse response for all input-output

channels. Regularization reduces variance of estimated model coefficients and produces a smoother
response by trading variance for bias.

For more information about these choices, see [1].

Data Types: char

InputOffset — Offset levels present in the input signals of estimation data
[1 (default) | vector | matrix

Offset levels present in the input signals of time-domain estimation data, specified as one of the
following:

* An Nu-element column vector, where Nu is the number of inputs. For multi-experiment data,
specify a Nu-by-Ne matrix, where Ne is the number of experiments. The offset value
InputOffset(i,j) is subtracted from the i" input signal of the j'™ experiment.

* [] — No offsets.
Data Types: double

OutputOffset — Output signal offset levels
[1 (default) | vector | matrix

Output signal offset level of time-domain estimation data, specified as one of the following:

* An Ny-element column vector, where Ny is the number of outputs. For multi-experiment data,
specify a Ny-by-Ne matrix, where Ne is the number of experiments. The offset value
OputOffset(i,j) is subtracted from the i*" output signal of the j'* experiment.

* [] — No offsets.
The specified values are subtracted from the output signals before using them for estimation.

Data Types: double

Advanced — Advanced estimation options
structure

Advanced options for regularized estimation, specified as a structure with the following fields:

* MaxSize — Maximum allowable size of Jacobian matrices formed during estimation, specified as a
large positive number.

Default: 250e3

* SearchMethod — Search method for estimating regularization parameters, specified as one of
the following values:

* 'gn': Quasi-Newton line search.

* 'fmincon': Trust-region-reflective constrained minimizer. In general, ' fmincon' is better
than 'gn' for handling bounds on regularization parameters that are imposed automatically
during estimation.

1-81

1 Functions

Default: ' fmincon'

Output Arguments

opt — Regularization options
arxRegulOptions options set

Regularization options, returned as an arxRegulOptions options set.

Compatibility Considerations

Renaming of Estimation and Analysis Options

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

References

[1] T. Chen, H. Ohlsson, and L. Ljung. “On the Estimation of Transfer Functions, Regularizations and
Gaussian Processes - Revisited”, Automatica, Volume 48, August 2012.

See Also
arxRegul

Topics
“Regularized Estimates of Model Parameters”

Introduced in R2014a

1-82

arxstruc

arxstruc

Compute loss functions for single-output ARX models

Syntax

V = arxstruc(ze,zv,NN)

Arguments

ze
Estimation data set can be iddata or idfrd object.
zv
Validation data set can be iddata or idfrd object.
NN
Matrix defines the number of different ARX-model structures. Each row of NN is of the form:

nn = [na nb nk]

Description

Note Use arxstruc for single-output systems only. arxstruc supports both single-input and
multiple-input systems.

V = arxstruc(ze,zv,NN) returns V, which contains the loss functions in its first row. The
remaining rows of V contain the transpose of NN, so that the orders and delays are given just below
the corresponding loss functions. The last column of V contains the number of data points in ze.

The output argument V is best analyzed using selstruc. The selection of a suitable model structure
based on the information in v is normally done using selstruc.

Examples

Generate Model-Order Combinations and Estimate Single-Input ARX Model

Create an ARX model for generating data.

A=1J1-1.50.7];
B=1[010.5];
m@ = idpoly(A,B);

Generate random input and additive noise signals.

iddata(
iddata(

idinput (400, 'rbs'));

u 1,
1,0.1*%randn(400,1));

e

—_——

Simulate the model output using the defined input and error signals.

1-83

1 Functions

1-84

sim(mO, [u e]);
[y,ul;

y
z

Generate model-order combinations for estimation. Specify a delay of 1 for all models, and a model
order range between 1 and 5 for na and nb.

NN = struc(1:5,1:5,1);

Estimate ARX models and compute the loss function for each model order combination. The input
data is split into estimation and validation data sets.

V = arxstruc(z(1:200),z(201:400),NN);

Select the model order with the best fit to the validation data.

order = selstruc(V,0);

Estimate an ARX model of selected order.

M = arx(z,order);

Generate Model-Order Combinations and Estimate Multi-Input ARX Model

Create estimation and validation data sets.

load co2data;

Ts = 0.5; % Sample time is 0.5 min
ze = iddata(Output expl,Input expl,Ts);
zv = iddata(Output exp2,Input exp2,Ts);

Generate model-order combinations for:

* na=2:4
* nb = 2:5 for the first input, and 1 or 4 for the second input.
* nk = 1:4 for the first input, and 0 for the second input.

NN = struc(2:4,2:5,[1 4],1:4,0);

Estimate an ARX model for each model order combination.

V = arxstruc(ze,zv,NN);

Select the model order with the best fit to the validation data.
order = selstruc(V,0);

Estimate an ARX model of selected order.

M = arx(ze,order);

Tips

Each of ze and zv is an iddata object containing output-input data. Frequency-domain data and
idfrd objects are also supported. Models for each of the model structures defined by NN are

arxstruc

estimated using the data set ze. The loss functions (normalized sum of squared prediction errors) are
then computed for these models when applied to the validation data set zv. The data sets ze and zv
need not be of equal size. They could, however, be the same sets, in which case the computation is
faster.

See Also
arx | idpoly | ivstruc | selstruc | struc

Introduced before R2006a

1-85

1 Functions

1-86

balred

Model order reduction

Syntax

[rsys,info] = balred(sys,order)
[~,info] = balred(sys)
[1 = balred(_ __ ,opts)

balred(sys)

Description

[rsys,info] = balred(sys,order) computes a reduced-order approximation rsys of the LTI
model sys. The desired order (number of states) is specified by order. You can try multiple orders at
once by setting order to a vector of integers, in which case rsys is an array of reduced models.
balred also returns a structure info with additional information like the Hankel singular values
(HSV), error bound, regularization level and the Cholesky factors of the gramians.

[~,info] = balred(sys) returns the structure info without computing the reduced-order model.
You can use this information to select the reduced order order based on your desired fidelity.

Note When performance is a concern, avoid computing the Hankel singular values twice by using
the information obtained from the above syntax to select the desired model order and then use rsys
= balred(sys,order,info) to compute the reduced-order model.

[1 = balred(__ ,opts) computes the reduced model using the options set opts that you
specify using balredOptions. You can specify additional options for eliminating states, using
absolute vs. relative error control, emphasizing certain time or frequency bands, and separating the
stable and unstable modes. See balredOptions to create and configure the option set opts.

balred(sys) displays the Hankel singular values and approximation error on a plot. Use hsvplot
to customize this plot.

Examples

Reduced-Order Model using Hankel Singular Values

For this example, use the Hankel singular value plot to select suitable order and compute the
reduced-order model.

For this instance, generate a random discrete-time state-space model with 40 states.

rng(0)
sys = drss(40);

Plot the Hankel singular values using balred.

balred

balred(sys)

Hankel Singular Values and Approximation Emor
T T T T T

B b e modes

— Ahsolule arror bound

107

10™

0%

State Contribution

107

1074

107

o 5 10 15 20 25 30 a5 40
Order (Mumber of States)

For this example, select order of 16 since it is the first order with an absolute error less than le-4. In
general, you select the order based on the desired absolute or relative fidelity. Then, compute the
reduced-order model.

rsys = balred(sys,16);
Verify the absolute error by plotting the singular value response using sigma.

sigma(sys,sys-rsys)

1-87

1 Functions

Singular Values
40 - -

Singular Values (dB)

100 | 1
120 e/]

40 :

-160 — ' —
102 10°"1 10¢ 10
Frequency (rad/s)

Observe from the plot that the error, represented by the red curve, is below -80 dB (1e-4).

Array of Reduced-Order Models

For this example, consider a random continuous-time state-space model with 65 states.
rng(0)

sys = rss(65);

size(sys)

State-space model with 1 outputs, 1 inputs, and 65 states.

Visualize the Hankel singular values on a plot.

balred(sys)

1-88

balred

Hanke! Singular Values and Approximation Emor

10° T T T T T T
B b modes

— Ahsolute armor bound

State Contribution

0 10 20 30 40 50 60
Order (Mumber of States)

For this instance, compute reduced-order models with 25, 30 and 35 states.
order = [25,30,35];

rsys = balred(sys,order);

size(rsys)

3x1 array of state-space models.
Each model has 1 outputs, 1 inputs, and between 25 and 35 states.

Reduced-Order Approximation with Offset Option
Compute a reduced-order approximation of the system given by:

G(s) = 5095 +1.1)(s+2.9)
(s + 10‘6)(5 +1)(s+2)(s+3)

Create the model.

sys = zpk([-0.5 -1.1 -2.9],[-1e-6 -2 -1 -3],1);

Exclude the pole at s = 107° from the stable term of the stable/unstable decomposition. To do so, set
the Offset option of balredOptions to a value larger than the pole you want to exclude.

opts = balredOptions('Offset',0.001, 'StateProjection', 'Truncate');

1-89

1 Functions

1-90

Visualize the Hankel singular values (HSV) and the approximation error.

balred(sys,opts)
o Hanke! Singular Values and Approximation Emor
107 T T T
s B s tahle modes
I b modes
—Ahsoluta arror bound
107
g 107
=
=]
|5
[
2
& 102
1077
£
b o 1 2 3 4 5

Order (Mumber of States)

Observe that the first HSV is red which indicates that it is associated with an unstable mode.

Now, compute a second-order approximation with the specified options.

[rsys,info] = balred(sys,2,o0pts);
rsys

rsys =
0.99113 (s+0.5235)
(s+1e-06) (s+1.952)

Continuous-time zero/pole/gain model.

Notice that the pole at - 1e-6 appears unchanged in the reduced model rsys.

Compare the responses of the original and reduced-order models.

bodeplot(sys, rsys, 'r--")

balred

Bode Diagram

M2 e
= =
T
'l
]
f
i

Magnitude (dB)
In'
{

Phase (deq)

_QU 1 1 1
102 107! 10° 10 102
Frequency (rad/s)

Observe that the bode response of the original model and the reduced-order model nearly match.

Model Reduction in a Particular Frequency Band
Reduce a high-order model with a focus on the dynamics in a particular frequency range.

Load a model and examine its frequency response.

load('highOrderModel.mat','G")
bodeplot(G)

1-91

1 Functions

Magnitude (dB)

Phase (deq)

Bode Diagram

1
W

ijkj wﬁka\th

=

10’

10°
Frequency (rad/s)

10°

G is a 48th-order model with several large peak regions around 5.2 rad/s, 13.5 rad/s, and 24.5 rad/s,
and smaller peaks scattered across many frequencies. Suppose that for your application you are only
interested in the dynamics near the second large peak, between 10 rad/s and 22 rad/s. Focus the
model reduction on the region of interest to obtain a good match with a low-order approximation. Use
balredOptions (Control System Toolbox) to specify the frequency interval for balred.

bopt =
GLim10
GLim18

balredOptions('StateProjection', 'Truncate', 'FreqIntervals',b[10,22]);
balred(G,10,bopt);
balred(G,18,bopt);

Examine the frequency responses of the reduced-order models. Also, examine the difference between

those responses and the original response (the absolute error).

subplot(2,1,1);

bodemag(G,GLim10,GLim18, logspace(0.5,1.5,100));
title('Bode Magnitude Plot')
legend('Original', 'Order 10','Order 18');

subplot(2,1,2);

bodemag (G-GLim10,G-GLim18, logspace(0.5,1.5,100));
title('Absolute Error Plot')
legend('Order 10', 'Order 18");

1-92

balred

Bode Magnitude Plot
20 T

Criginal
Order 10
AN Order 18

Magnitude (dB)
"ﬁ,
\N
ped
) T
Va
/
\
Ve

80k i _
10°
Frequency (rad/s)
Absolute Error Plot
0 T
o Order 10
%-HJU — — Order 18 [
—g "-WW—\/{ _.-":f
S 200 | .
tgﬂ A VTN
-300 :

10"
Frequency (rad/s)

With the frequency-limited energy computation, even the 10th-order approximation is quite good in
the region of interest.

Model-Order Reduction with Relative Error Approximation

For this example, consider the SISO state-space model cdrom with 120 states. You can use absolute
or relative error control when approximating models with balred. This example compares the two
approaches when applied to a 120-state model of a portable CD player device crdom [1,2] on page 1-
0

Load the CD player model cdrom.

load cdromData.mat cdrom
size(cdrom)

State-space model with 1 outputs, 1 inputs, and 120 states.
To compare results with absolute vs. relative error control, create one option set for each approach.

balredOptions('ErrorBound', 'absolute', 'StateProjection', 'truncate');
balredOptions('ErrorBound', 'relative', 'StateProjection', 'truncate');

opt_abs
opt_rel

Compute reduced-order models of order 15 with both approaches.

1-93

1 Functions

rsys_abs balred(cdrom,15,o0pt _abs);
rsys rel balred(cdrom,15,o0pt rel);
size(rsys_abs)

State-space model with 1 outputs, 1 inputs, and 15 states.
size(rsys rel)
State-space model with 1 outputs, 1 inputs, and 15 states.

Plot the Bode response of the original model along with the absolute-error and relative-error reduced
models.

bo = bodeoptions;

bo.PhaseMatching = 'on';

bodeplot(cdrom,'b."',rsys abs,'r',rsys rel, 'g',bo)

legend('Original (120 states)', 'Absolute Error (15 states)', 'Relative Error (15 states)')

Bode Diagram

=
T

Magnitude (dB)
=
|
1

=100
_15ﬁ PSS TE T M TETE | MR AT M T | sl
{? ‘—""""'I—__'_ oy AL T T T T T
- RN B = Original (120 slatas)
= Ahealute Errar (15 slates)
_ ¥ —— Relafiva Emar {15 statas) | |
=
=
o -T20| 1
E —
o

%
e
}

;

T MR TETIT PRI | MR MR L MR T
10? 10° 10" 10°%
Frequency (rad/s)

_;
=
=

Observe that the Bode response of:

* The relative-error reduced model rsys rel nearly matches the response of the original model
sys across the complete frequency range.

* The absolute-error reduced model rsys abs matches the response of the original model sys only
in areas with the most gain.

1-94

balred

References

1 Benchmark Examples for Model Reduction, Subroutine Library in Systems and Control Theory
(SLICOT). The CDROM data set is reproduced with permission, see BSD3-license for details.

2 AVarga, “On stochastic balancing related model reduction”, Proceedings of the 39th IEEE
Conference on Decision and Control (Cat. No.0OCH37187), Sydney, NSW, 2000, pp. 2385-2390
vol.3, doi: 10.1109/CDC.2000.914156.

Input Arguments

sys — Dynamic system
dynamic system model

Dynamic system, specified as a SISO or MIMO dynamic system model (Control System Toolbox).
Dynamic systems that you can use can be continuous-time or discrete-time numeric LTI models, such
as tf, zpk, or ssmodels.

When sys has unstable poles, balred decomposes sys to its stable and unstable parts and only the
stable part is approximated. Use balredOptions to specify additional options for the stable/unstable
decomposition.

balred does not support frequency response data models, uncertain and generalized state-space
models, PID models or sparse model objects.

order — Desired number of states
integer | vector of integers

Desired number of states, specified as an integer or a vector of integers. You can try multiple orders
at once by setting order to a vector of integers, in which case rys is returned as an array of reduced
models.

You can also use the Hankel singular values and error bound information to select the reduced-model
order based on the desired model fidelity.

opts — Additional options for model reduction
options set

Additional options for model reduction, specified as an options set. You can specify additional options
for eliminating states, using absolute vs. relative error control, emphasizing certain time or frequency
bands, and separating the stable and unstable modes.

See balredOptions to create and configure the option set opts.

Output Arguments

rsys — Reduced-order model
dynamic system model | array of dynamic system models

Reduced-order model, returned as a dynamic system model or an array of dynamic system models.

info — Additional information about the LTI model
structure

Additional information about the LTI model, returned as a structure with the following fields:

1-95

http://slicot.org/20-site/126-benchmark-examples-for-model-reduction

1 Functions

* HSV — Hankel singular values (state contributions to the input/output behavior). In state
coordinates that equalize the input-to-state and state-to-output energy transfers, the Hankel
singular values measure the contribution of each state to the input/output behavior. Hankel
singular values are to model order what singular values are to matrix rank. In particular, small
Hankel singular values signal states that can be discarded to simplify the model.

* ErrorBound — Bound on absolute or relative approximation error. info.ErrorBound(J+1)
bounds the error for order J.

* Regularization — Regularization level [(for relative error only). Here, sys is replaced by
[sys,p*I] or [sys;p*I] that ensures a well-defined relative error at all frequencies.

* Rr, Ro — Cholesky factors of gramians.

Algorithms

1 balred first decomposes G into its stable and unstable parts:

G =G, +G,

2 When you specify ErrorBound as absolute, balred uses the balanced truncation method of

[1] to reduce G;. This computes the Hankel singular values (HSV) o; based on the controllability
n

and observability gramians. For order r, the absolute error |G — G/, is bounded by 2 E aj.
j=r+1
Here, n is the number of states in G;.

3 When you specify ErrorBound as relative, balred uses the balanced stochastic truncation
method of [2] to reduce G;. For square G;, this computes the HSV o; of the phase matrix

F = (W’)_lG where W(s) is a stable, minimum-phase spectral factor of GG’:
W' (s)W(s) = G(s)G'(s)

For order r, the relative error |Gs-1(Gs — Gy)| ,, is bounded by:

Alternative Functionality

App
Model Reducer
Live Editor Task

Reduce Model Order (Control System Toolbox)

Compatibility Considerations

MatchDC option honored when specified frequency or time intervals exclude DC
Behavior changed in R2017b

1-96

balred

When you use balred for model reduction, you can use balredOptions to restrict the computation
to specified frequency or time intervals. If the StateProjection option of balredOptions is set to
'"MatchDC' (the default value), then balred attempts to match the DC gain of the original and
reduced models, even if the specified intervals exclude DC (frequency = 0 or time = Inf).

Prior to R2017D, if you specified time or frequency intervals that excluded DC, balred did not
attempt to match the DC gain of the original and reduced models, even if StateProjection =
'MatchDC'.

References

[1] Varga, A., "Balancing-Free Square-Root Algorithm for Computing Singular Perturbation
Approximations," Proc. of 30th IEEE CDC, Brighton, UK (1991), pp. 1062-1065.

[2] Green, M., "A Relative Error Bound for Balanced Stochastic Truncation", IEEE Transactions on
Automatic Control, Vol. 33, No. 10, 1988

See Also

Functions
balredOptions

Apps
Model Reducer

Live Editor Tasks
Reduce Model Order

Topics
“Model Reduction Basics” (Control System Toolbox)
“Balanced Truncation Model Reduction” (Control System Toolbox)

Introduced before R2006a

1-97

1 Functions

bandwidth

Frequency response bandwidth

Syntax
fb = bandwidth(sys)
fb = bandwidth(sys,dbdrop)

Description

fb = bandwidth(sys) returns the bandwidth of the SISO dynamic system model sys. The
bandwidth is the first frequency where the gain drops below 70.79% (-3 dB) of its DC value. The
bandwidth is expressed in rad/TimeUnit, where TimeUnit is the TimeUnit property of sys.

This command requires a Control System Toolbox™ license.

fb = bandwidth(sys,dbdrop) returns the bandwidth for a specified gain drop.

Examples

Compute System Bandwidth
Compute the bandwidth of the transfer function sys = 1/(s+1).

sys = tf(1,[1 1]);
fb = bandwidth(sys)

fb = 0.9976

This result shows that the gain of sys drops to 3 dB below its DC value at around 1 rad/s.

Find Bandwidth of System with Custom Gain Drop

Compute the frequency at which the gain of a system drops to 3.5 dB below its DC value. Create a
state-space model.

A = ['21'1;1'0];
B =1[1;0];
C=11,2];

D =1;

sys =’SS(A,B,C.D);
Find the 3.5 dB bandwidth of sys.

dbdrop = -3.5;
fb = bandwidth(sys,dbdrop)

fb = 0.8348

1-98

bandwidth

Find Bandwidth of Model Array

Find the bandwidth of each entry in a 5-by-1 array of transfer function models. Use a for loop to
create the array, and confirm its dimensions.

sys = tf(zeros(1,1,5));
s = tf('s");
for m = 1:5
sys(:,:,m) = m/(s"2+s+m);
end
size(sys)

5x1 array of transfer functions.
Each model has 1 outputs and 1 inputs.

Find the bandwidths.

fb bandwidth(sys)

fb = 5x1

1.2712
1.9991
2.5298
2.9678
3.3493

bandwidth returns an array in which each entry is the bandwidth of the corresponding entry in sys.
For instance, the bandwidth of sys(:,:,2) is fb(2).

Input Arguments

sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO dynamic system model or an array of SISO dynamic system
models. Dynamic systems that you can use include:

* Continuous-time or discrete-time numeric LTI models such as tf, zpk, or ss models.

* Frequency-response data models such as frd models. For such models, bandwidth uses the first
frequency point to approximate the DC gain.

If sys is an array of models, bandwidth returns an array of the same size, where each entry is the
bandwidth of the corresponding model in sys. For more information on model arrays, see “Model
Arrays” (Control System Toolbox).

dbdrop — Gain drop
3 (default) | negative scalar

Gain drop in dB, specified as a real negative scalar.

1-99

1 Functions

Output Arguments

fb — Frequency response bandwidth
scalar | array

Frequency response bandwidth, returned as a scalar or an array. If sys is:

* Asingle model, then fb is the bandwidth of sys.

* A model array, then fb is an array of the same size as the model array sys. Each entry is the
bandwidth of the corresponding entry in sys.

fb is expressed in rad/TimeUnit, where TimeUnit is the TimeUnit property of sys.

See Also
bodeplot | dcgain | issiso

Introduced before R2006a

1-100

bj

bj

Estimate Box-Jenkins polynomial model using time domain data

Syntax

sys = bj(data, [nb nc nd nf nk])

sys = bj(data,[nb nc nd nf nk], Name,Value)
sys = bj(data, init sys)

sys = bj(data, , opt)

[sys,icl = bj(__)

Description

sys = bj(data, [nb nc nd nf nk]) estimates a Box-Jenkins polynomial model, sys, using the
time-domain data, data. [nb nc nd nf nk] define the orders of the polynomials used for
estimation.

sys = bj(data,[nb nc nd nf nk], Name,Value) estimates a polynomial model with
additional options specified by one or more Name, Value pair arguments.

sys = bj(data, init sys) estimates a Box-Jenkins polynomial using the polynomial model
init sys to configure the initial parameterization of sys.

sys = bj(data, __ , opt) estimates a Box-Jenkins polynomial using the option set, opt, to
specify estimation behavior.

[sys,ic] = bj() returns the estimated initial conditions as an initialCondition object.
Use this syntax if you plan to simulate or predict the model response using the same estimation input

data and then compare the response with the same estimation output data. Incorporating the initial
conditions yields a better match during the first part of the simulation.

Input Arguments

data

Estimation data.

data is an iddata object that contains time-domain input and output signal values.
You cannot use frequency-domain data for estimating Box-Jenkins models.

Default:

[nb nc nd nf nk]

A vector of matrices containing the orders and delays of the Box-Jenkins model. Matrices must
contain nonnegative integers.

* nb is the order of the B polynomial plus 1 (Ny-by-Nu matrix)

1-101

1 Functions

1-102

* nc is the order of the C polynomial plus 1 (Ny-by-1 matrix)
* nd is the order of the D polynomial plus 1 (Ny-by-1 matrix)
* nf is the order of the F polynomial plus 1 (Ny-by-Nu matrix)

* nkis the input delay (in number of samples, Ny-by-Nu matrix) where Nu is the number of inputs
and Ny is the number of outputs.

opt
Estimation options.
opt is an options set that configures, among others, the following:

* estimation objective
* initial conditions
* numerical search method to be used in estimation

Use bjOptions to create the options set.

init_sys

Polynomial model that configures the initial parameterization of sys.

init sys must be an idpoly model with the Box-Jenkins structure that has only B, C, D and F
polynomials active. bj uses the parameters and constraints defined in init sys as the initial guess

for estimating sys.

Use the Structure property of init sys to configure initial guesses and constraints for B(q), F(q),
C(q) and D(q).

To specify an initial guess for, say, the C(q) term of init sys, set init sys.Structure.C.Value
as the initial guess.

To specify constraints for, say, the B(q) term of init sys:

* setinit sys.Structure.B.Minimum to the minimum B(q) coefficient values
* setinit sys.Structure.B.Maximum to the maximum B(q) coefficient values
* setinit sys.Structure.B.Free to indicate which B(q) coefficients are free for estimation

You can similarly specify the initial guess and constraints for the other polynomials.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ...,NameN,ValueN.

InputDelay

Input delays. InputDelay is a numeric vector specifying a time delay for each input channel. Specify

input delays in integer multiples of the sample time Ts. For example, InputDelay = 3 meansa
delay of three sampling periods.

bj

For a system with Nu inputs, set InputDelay to an Nu-by-1 vector, where each entry is a numerical
value representing the input delay for the corresponding input channel. You can also set InputDelay
to a scalar value to apply the same delay to all channels.

Default: 0 for all input channels

I0Delay

Transport delays. I0Delay is a numeric array specifying a separate transport delay for each input/
output pair.

Specify transport delays as integers denoting delay of a multiple of the sample time Ts.

For a MIMO system with Ny outputs and Nu inputs, set I0Delay to a Ny-by-Nu array, where each
entry is a numerical value representing the transport delay for the corresponding input/output pair.
You can also set I0Delay to a scalar value to apply the same delay to all input/output pairs.
Default: 0 for all input/output pairs

IntegrateNoise

Logical specifying integrators in the noise channel.

IntegrateNoise is a logical vector of length Ny, where Ny is the number of outputs.

Setting IntegrateNoise to true for a particular output results in the model:

= B@, - Clg e
YO = Fig"t =M ¥ Dig1_ g1

Where,

— is the integrator in the noise channel,e(t).

Default: false(Ny, 1) (Ny is the number of outputs)

Output Arguments
sys

BJ model that fits the estimation data, returned as a discrete-time idpoly object. This model is
created using the specified model orders, delays, and estimation options.

Information about the estimation results and options used is stored in the Report property of the
model. Report has the following fields:

Report Description

Field

Status Summary of the model status, which indicates whether the model was created by
construction or obtained by estimation.

Method Estimation command used.

1-103

1 Functions

1-104

Report
Field

Description

InitialCo
ndition

Handling of initial conditions during model estimation, returned as one of the following
values:
e 'zero' — The initial conditions were set to zero.

* ‘'estimate' — The initial conditions were treated as independent estimation
parameters.

* 'backcast' — The initial conditions were estimated using the best least squares
fit.

This field is especially useful to view how the initial conditions were handled when the
InitialCondition option in the estimation option setis 'auto".

Fit

Quantitative assessment of the estimation, returned as a structure. See “Loss Function
and Model Quality Metrics” for more information on these quality metrics. The
structure has the following fields:

Field Description

FitPerce |Normalized root mean squared error (NRMSE) measure of how well the
nt response of the model fits the estimation data, expressed as the
percentage fit = 100(1-NRMSE).

LossFcn |Value of the loss function when the estimation completes.

MSE Mean squared error (MSE) measure of how well the response of the

model fits the estimation data.

FPE Final prediction error for the model.

AIC Raw Akaike Information Criteria (AIC) measure of model quality.

AICc Small sample-size corrected AIC.

nAIC Normalized AIC.

BIC

Bayesian Information Criteria (BIC).

Parameter
S

Estimated values of model parameters.

OptionsUs
ed

Option set used for estimation. If no custom options were configured, this is a set of
default options. See bjOptions for more information.

RandState

State of the random number stream at the start of estimation. Empty, [1, if
randomization was not used during estimation. For more information, see rng.

bj

Report Description
Field
DataUsed |Attributes of the data used for estimation, returned as a structure with the following
fields:
Field Description
Name Name of the data set.
Type Data type.
Length Number of data samples.
Ts Sample time.
InterSam |Input intersample behavior, returned as one of the following values:
ple
* 'zoh' — Zero-order hold maintains a piecewise-constant input signal
between samples.
» 'foh' — First-order hold maintains a piecewise-linear input signal
between samples.
* 'bl' — Band-limited behavior specifies that the continuous-time input
signal has zero power above the Nyquist frequency.
InputOff |Offset removed from time-domain input data during estimation. For
set nonlinear models, itis [].
OQutputOf |Offset removed from time-domain output data during estimation. For
fset nonlinear models, it is [].
Terminati |Termination conditions for the iterative search used for prediction error minimization,
on returned as a structure with the following fields:

Field

Description

WhyStop

Reason for terminating the numerical search.

Iteratio
ns

Number of search iterations performed by the estimation algorithm.

FirstOrd
erOptima
lity

co-norm of the gradient search vector when the search algorithm
terminates.

FcnCount

Number of times the objective function was called.

UpdateNo
rm

Norm of the gradient search vector in the last iteration. Omitted when the
search method is ' Lsgnonlin' or 'fmincon'.

LastImpr
ovement

Criterion improvement in the last iteration, expressed as a percentage.
Omitted when the search method is ' Lsgnonlin' or 'fmincon'.

Algorith
m

Algorithm used by 'lsgnonlin' or 'fmincon' search method. Omitted
when other search methods are used.

For estimation methods that do not require numerical search optimization, the
Termination field is omitted.

For more information on using Report, see “Estimation Report”.

1-105

1 Functions

1-106

[nb nc nd nf nk]

A vector of matrices containing the orders and delays of the Box-Jenkins model. Matrices must
contain nonnegative integers.

* nb is the order of the B polynomial plus 1 (Ny-by-Nu matrix)

* nc is the order of the C polynomial plus 1 (Ny-by-1 matrix)

* nd is the order of the D polynomial plus 1 (Ny-by-1 matrix)

* nf is the order of the F polynomial plus 1 (Ny-by-Nu matrix)

* nkis the input delay (in number of samples, Ny-by-Nu matrix) where Nu is the number of inputs
and Ny is the number of outputs.

ic

Estimated initial conditions, returned as an initialCondition object or an object array of
initialCondition values.

» For a single-experiment data set, ic represents, in state-space form, the free response of the
transfer function model (A and C matrices) to the estimated initial states (x,).

» For a multiple-experiment data set with N, experiments, ic is an object array of length N, that
contains one set of initialCondition values for each experiment.

If bj returns ic values of 0 and the you know that you have non-zero initial conditions, set the
'InitialCondition' optionin bjOptions to 'estimate’' and pass the updated option set to bj.
For example:

opt = bjOptions('InitialCondition, 'estimate’)
[sys,ic] = bj(data,[nb nc nd nf nk],opt)

The default 'auto' setting of 'InitialCondition' uses the 'zero' method when the initial
conditions have a negligible effect on the overall estimation-error minimization process. Specifying
'estimate’ ensures that the software estimates values for ic.

For more information, see initialCondition. For an example of using this argument, see “Obtain
Initial Conditions” on page 1-109.

Examples

Identify SISO Box-Jenkins Model

Estimate the parameters of a single-input, single-output Box-Jenkins model from measured data.

load iddatal z1;
nb
nc
nd
nf
nk ;
sys = bj(zl,[nb nc nd nf nk]);

HFNNNN

’
’
’
’
’

sys is a discrete-time idpoly model with estimated coefficients. The order of sys is as described by
nb, nc, nd, nf, and nk.

bj

Use getpvec to obtain the estimated parameters and getcov to obtain the covariance associated
with the estimated parameters.

Estimate a Multi-Input, Single-Output Box-Jenkins Model

Estimate the parameters of a multi-input, single-output Box-Jenkins model from measured data.

load iddata8

nb =[211];
nc = 1;

nd = 1;

nf = [2 1 2];
nk = [5 10 15];

sys = bj(z8,[nb nc nd nf nkl);

sys estimates the parameters of a model with three inputs and one output. Each of the inputs has a
delay associated with it.

Estimate Box-Jenkins Model Using Regularization
Estimate a regularized B] model by converting a regularized ARX model.

Load data.

load regularizationExampleData.mat mOsimdata;

Estimate an unregularized B] model of order 30.

ml = bj(m@simdata(1:150),[15 15 15 15 1]);

Estimate a regularized B] model by determining Lambda value by trial and error.

opt = bjOptions;
opt.Regularization.Lambda = 1;
m2 = bj(mOsimdata(1l:150),[15 15 15 15 1],opt);

Obtain a lower-order B] model by converting a regularized ARX model followed by order reduction.

optl = arxOptions;

[L,R] = arxRegul(mO@simdata(1:150),[30 30 1]);
optl.Regularization.Lambda = L;
optl.Regularization.R = R;

m@ = arx(mOsimdata(1l:150),[30 30 1],optl);

mr = idpoly(balred(idss(m@),7));

Compare the model outputs against data.

opt2 = compareOptions('InitialCondition','z");
compare(mOsimdata(150:end),ml,m2,mr,opt2);

1-107

1 Functions

Simulated Response Comparison

25 T T T T T
Validation data (y1)
2r || m1: 52.83% T
m2: 57.59%
1571 mr: 64.91%

Amplitude

2.5 :
150 160 170 180 190 200 210

Time (seconds)

Configure Estimation Options

Estimate the parameters of a single-input, single-output Box-Jenkins model while configuring some
estimation options.

Generate estimation data.

B=1[010.5];
C=1[1-10.2];
D=1[11.50.7];
F=1[1-1.50.7];

sys® = idpoly(1,B,C,D,F,0.1);

e = iddata([],randn(200,1));
u = iddata([],idinput(200));
y = sim(sys0,[u e]);

data = [y ul;

data is a single-input, single-output data set created by simulating a known model.

Estimate initial Box-Jenkins model.

nb = 2;
nc = 2;
nd = 2;
nf = 2;

1-108

bj

nk = 1;
init sys = bj(data,[2 2 2 2 1]);

Create an estimation option set to refine the parameters of the estimated model.
opt = bjOptions;

opt.Display = 'on';

opt.SearchOptions.MaxIterations = 50;

opt is an estimation option set that configures the estimation to iterate 50 times at most and display
the estimation progress.

Reestimate the model parameters using the estimation option set.
sys = bj(data,init sys,opt);
sys is estimated using init_sys for the initial parameterization for the polynomial coefficients.

To view the estimation result, enter sys.Report.

Estimate MIMO Box-Jenkins Model
Estimate a multi-input, multi-output Box-Jenkins model from estimated data.

Load measured data.

load iddatal z1

load iddata2 z2

data = [zl z2(1:300)];

data contains the measured data for two inputs and two outputs.

Estimate the model.

nb = [2 2; 3 4];
nc = [2;2];
nd = [2;2];
nf =[10; 2 2];
nk = [11; 0 0];

sys = bj(data,[nb nc nd nf nkl);
The polynomial order coefficients contain one row for each output.

sys is a discrete-time idpoly model with two inputs and two outputs.

Obtain Initial Conditions

Load the data.

load iddatalic z1li

Estimate a second-order Box-Jenkins model sys and return the initial conditions in ic.

1-109

1 Functions

nb
nc
nd
nf

SHE NNNN

[
) ~= ~= == ~= ==

[sys,ic] = bj(z1li,[nb nc nd nf nk]);

ic

ic =
initialCondition with properties:
A: [4x4 double]
X0: [4x1 double]

C: [0.8744 0.5426 0.4647 -0.5285]
Ts: 0.1000

icisan initialCondition object that encapsulates the free response of sys, in state-space form,
to the initial state vector in X0. You can incorporate ic when you simulate sys with the z1i input
signal and compare the response with the z1i output signal.

More About

Box-Jenkins Model Structure

The general Box-Jenkins model structure is:

nu B
o= 3 %ui(t — k) + SWe()

where nu is the number of input channels.
The orders of Box-Jenkins model are defined as follows:
nb: B(q)=by+byg 4+ ... +bypqg P +1
nc: C(q)=1+c1q 4 ... +cpeq ™
nd: D(q)=1+d1q '+ ...+ dpgq ™
nfi F(q)=1+f1q7 + o+ fopq™

Alternatives

To estimate a continuous-time model, use:

+ tfest — returns a transfer function model
* ssest — returns a state-space model
* bj to first estimate a discrete-time model and convert it a continuous-time model using d2c.

1-110

bj

References

[1] Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hall PTR,
1999.

Extended Capabilities

Automatic Parallel Support
Accelerate code by automatically running computation in parallel using Parallel Computing Toolbox™.

Parallel computing support is available for estimation using the Lsqnonlin search method (requires
Optimization Toolbox). To enable parallel computing, use bjOptions, set SearchMethod to
"lsgnonlin’', and set SearchOptions.Advanced.UseParallel to true.

For example:

opt = bjOptions;
opt.SearchMethod = 'lsgnonlin’;
opt.SearchOptions.Advanced.UseParallel = true;

See Also
armax | arx | bjOptions | compare | d2c | forecast | iddata | idpoly | iv4 | oe | polyest |
sim| ssest | tfest

Topics
“Regularized Estimates of Model Parameters”
“Apply Initial Conditions when Simulating Identified Linear Models”

Introduced before R2006a

1-111

1 Functions

bjOptions

Option set for bj

Syntax

opt
opt

bjOptions
bjOptions(Name,Value)

Description

bjOptions creates the default options set for bj.

opt

opt bjOptions(Name,Value) creates an option set with the options specified by one or more
Name, Value pair arguments.

Input Arguments
Name-Value Pair Arguments

Specify optional comma-separated pairs of Name, Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Namel,Valuel, ..., NameN, ValueN.

InitialCondition — Handling of initial conditions
'auto' (default) | 'zero' | 'estimate’ | 'backcast’

Handling of initial conditions during estimation, specified as one of the following values:

* 'zero' — The initial conditions are set to zero.
+ 'estimate' — The initial conditions are treated as independent estimation parameters.
* 'backcast' — The initial conditions are estimated using the best least squares fit.

 'auto' — The software chooses the method to handle initial conditions based on the estimation
data.

Focus — Error to be minimized
'prediction' (default) | 'simulation’

Error to be minimized in the loss function during estimation, specified as the comma-separated pair
consisting of 'Focus' and one of the following values:

 'prediction' — The one-step ahead prediction error between measured and predicted outputs
is minimized during estimation. As a result, the estimation focuses on producing a good predictor
model.

 'simulation' — The simulation error between measured and simulated outputs is minimized
during estimation. As a result, the estimation focuses on making a good fit for simulation of model
response with the current inputs.

The Focus option can be interpreted as a weighting filter in the loss function. For more information,
see “Loss Function and Model Quality Metrics”.

1-112

bjOptions

WeightingFilter — Weighting prefilter
[1 (default) | vector | matrix | cell array | linear system

Weighting prefilter applied to the loss function to be minimized during estimation. To understand the
effect of WeightingFilter on the loss function, see “Loss Function and Model Quality Metrics”.

Specify WeightingFilter as one of the following values:

* [] — No weighting prefilter is used.

» Passbands — Specify a row vector or matrix containing frequency values that define desired
passbands. You select a frequency band where the fit between estimated model and estimation
data is optimized. For example, [wl,wh], where wl and wh represent lower and upper limits of a
passband. For a matrix with several rows defining frequency passbands,
[wll,wlh;w21,w2h;w31,w3h;...], the estimation algorithm uses the union of the frequency
ranges to define the estimation passband.

Passbands are expressed in rad/TimeUnit for time-domain data and in FrequencyUnit for
frequency-domain data, where TimeUnit and FrequencyUnit are the time and frequency units
of the estimation data.

» SISO filter — Specify a single-input-single-output (SISO) linear filter in one of the following ways:

* A SISO LTI model

« {A,B,C,D} format, which specifies the state-space matrices of a filter with the same sample
time as estimation data.

* {numerator,denominator} format, which specifies the numerator and denominator of the
filter as a transfer function with same sample time as estimation data.

This option calculates the weighting function as a product of the filter and the input spectrum
to estimate the transfer function.

EnforceStability — Control whether to enforce stability of model
false (default) | true

Control whether to enforce stability of estimated model, specified as the comma-separated pair
consisting of 'EnforceStability' and either true or false.

Data Types: logical

EstimateCovariance — Control whether to generate parameter covariance data
true (default) | false

Controls whether parameter covariance data is generated, specified as true or false.

If EstimateCovariance is true, then use getcov to fetch the covariance matrix from the
estimated model.

Display — Specify whether to display the estimation progress
'off' (default) | 'on'

Specify whether to display the estimation progress, specified as one of the following values:

* 'on' — Information on model structure and estimation results are displayed in a progress-viewer
window.

1-113

1 Functions

1-114

+ 'off' — No progress or results information is displayed.

InputOffset — Removal of offset from time-domain input data during estimation
[1 (default) | vector of positive integers | matrix

Removal of offset from time-domain input data during estimation, specified as the comma-separated
pair consisting of ' InputOffset' and one of the following:

* A column vector of positive integers of length Nu, where Nu is the number of inputs.
* [] — Indicates no offset.

* Nu-by-Ne matrix — For multi-experiment data, specify Input0ffset as an Nu-by-Ne matrix. Nu
is the number of inputs, and Ne is the number of experiments.

Each entry specified by InputOffset is subtracted from the corresponding input data.

OutputOffset — Removal of offset from time-domain output data during estimation
[1 (default) | vector | matrix

Removal of offset from time-domain output data during estimation, specified as the comma-separated
pair consisting of 'OQutputOffset' and one of the following:

* A column vector of length Ny, where Ny is the number of outputs.
* [] — Indicates no offset.

* Ny-by-Ne matrix — For multi-experiment data, specify OutputOffset as a Ny-by-Ne matrix. Ny is
the number of outputs, and Ne is the number of experiments.

Each entry specified by OutputOffset is subtracted from the corresponding output data.

Regularization — Options for regularized estimation of model parameters
structure

Options for regularized estimation of model parameters. For more information on regularization, see
“Regularized Estimates of Model Parameters”.

Regularization is a structure with the following fields:

* Lambda — Constant that determines the bias versus variance tradeoff.
Specify a positive scalar to add the regularization term to the estimation cost.
The default value of zero implies no regularization.

Default: 0
* R — Weighting matrix.

Specify a vector of nonnegative numbers or a square positive semi-definite matrix. The length
must be equal to the number of free parameters of the model.

For black-box models, using the default value is recommended. For structured and grey-box
models, you can also specify a vector of np positive numbers such that each entry denotes the
confidence in the value of the associated parameter.

The default value of 1 implies a value of eye(npfree), where npfree is the number of free
parameters.

bjOptions

Default: 1
Nominal — The nominal value towards which the free parameters are pulled during estimation.

The default value of zero implies that the parameter values are pulled towards zero. If you are
refining a model, you can set the value to 'model’ to pull the parameters towards the parameter
values of the initial model. The initial parameter values must be finite for this setting to work.

Default: 0

SearchMethod — Numerical search method used for iterative parameter estimation
‘auto’ (default) | 'gn' | 'gna' | 'lm' | 'grad' | 'lsgnonlin' | 'fmincon'

Numerical search method used for iterative parameter estimation, specified as the comma-separated
pair consisting of 'SearchMethod' and one of the following:

'auto' — A combination of the line search algorithms, ‘gn', 'lm', 'gna’', and 'grad' methods
is tried in sequence at each iteration. The first descent direction leading to a reduction in
estimation cost is used.

'gn' — Subspace Gauss-Newton least squares search. Singular values of the Jacobian matrix less
than GnPinvConstant*eps*max(size(J))*norm(J) are discarded when computing the
search direction. J is the Jacobian matrix. The Hessian matrix is approximated as J7J. If there is no
improvement in this direction, the function tries the gradient direction.

'gna' — Adaptive subspace Gauss-Newton search. Eigenvalues less than gamma*max(sv) of the
Hessian are ignored, where sv contains the singular values of the Hessian. The Gauss-Newton
direction is computed in the remaining subspace. gamma has the initial value
InitialGnaTolerance (see Advanced in 'SearchOptions' for more information). This value
is increased by the factor LMStep each time the search fails to find a lower value of the criterion
in fewer than five bisections. This value is decreased by the factor 2*LMStep each time a search is
successful without any bisections.

'"lm' — Levenberg-Marquardt least squares search, where the next parameter value is -pinv(H
+d*I)*grad from the previous one. H is the Hessian, I is the identity matrix, and grad is the
gradient. d is a number that is increased until a lower value of the criterion is found.

'grad' — Steepest descent least squares search.

"lsgnonlin' — Trust-region-reflective algorithm of 1sqnonlin. Requires Optimization Toolbox
software.

"fmincon' — Constrained nonlinear solvers. You can use the sequential quadratic programming
(SQP) and trust-region-reflective algorithms of the fmincon solver. If you have Optimization
Toolbox software, you can also use the interior-point and active-set algorithms of the fmincon
solver. Specify the algorithm in the SearchOptions.Algorithm option. The fmincon algorithms
may result in improved estimation results in the following scenarios:

* Constrained minimization problems when there are bounds imposed on the model parameters.

¢ Model structures where the loss function is a nonlinear or non smooth function of the
parameters.

* Multi-output model estimation. A determinant loss function is minimized by default for multi-
output model estimation. fmincon algorithms are able to minimize such loss functions directly.
The other search methods such as 'lm' and 'gn' minimize the determinant loss function by
alternately estimating the noise variance and reducing the loss value for a given noise variance
value. Hence, the fmincon algorithms can offer better efficiency and accuracy for multi-output
model estimations.

1-115

1 Functions

SearchOptions — Option set for the search algorithm
search option set

Option set for the search algorithm, specified as the comma-separated pair consisting of
'SearchOptions' and a search option set with fields that depend on the value of SearchMethod.

1-116

bjOptions

SearchOptions Structure When SearchMethod is Specified as 'gn', ‘gna’, 'lm', 'grad’, or

'auto’
Field Description Default
Name
Toleran |Minimum percentage difference between the current value of the loss 0.01
ce function and its expected improvement after the next iteration, specified as

a positive scalar. When the percentage of expected improvement is less

than Tolerance, the iterations stop. The estimate of the expected loss-

function improvement at the next iteration is based on the Gauss-Newton

vector computed for the current parameter value.
MaxIter |Maximum number of iterations during loss-function minimization, specified |20
ations |as a positive integer. The iterations stop when MaxIterations is reached

or another stopping criterion is satisfied, such as Tolerance.
Setting MaxIterations = 0 returns the result of the start-up procedure.

Use sys.Report.Termination.Iterations to get the actual number
of iterations during an estimation, where sys is an idtf model.

1-117

1 Functions

1-118

Field Description Default
Name
Advance |Advanced search settings, specified as a structure with the following fields:
d
Field Name |Description Default
GnPinvCons |Jacobian matrix singular value threshold, specified as a 10000
tant positive scalar. Singular values of the Jacobian matrix that
are smaller than
GnPinvConstant*max(size(J)*norm(J)*eps) are
discarded when computing the search direction.
Applicable when SearchMethodis 'gn'.
InitialGna [Initial value of gamma, specified as a positive scalar. 0.0001
Tolerance |Applicable when SearchMethod is 'gna’.
LMStartVal |Starting value of search-direction length d in the 0.001
ue Levenberg-Marquardt method, specified as a positive
scalar. Applicable when SearchMethod is 'lm"'.
LMStep Size of the Levenberg-Marquardt step, specified as a 2
positive integer. The next value of the search-direction
length d in the Levenberg-Marquardt method is LMStep
times the previous one. Applicable when SearchMethod
is "lm"'.
MaxBisecti |Maximum number of bisections used for line search along |25
ons the search direction, specified as a positive integer.
MaxFunctio |Maximum number of calls to the model file, specified as a [Inf
nEvaluatio |positive integer. Iterations stop if the number of calls to
ns the model file exceeds this value.
MinParamet |Smallest parameter update allowed per iteration, 0
erChange specified as a nonnegative scalar.
RelativelIm |Relative improvement threshold, specified as a 0
provement |nonnegative scalar. Iterations stop if the relative
improvement of the criterion function is less than this
value.
StepReduct |Step reduction factor, specified as a positive scalar that is |2
ion greater than 1. The suggested parameter update is

reduced by the factor StepReduction after each try.
This reduction continues until MaxBisections tries are
completed or a lower value of the criterion function is
obtained.

StepReduction is not applicable for SearchMethod
"Im' (Levenberg-Marquardt method).

bjOptions

SearchOptions Structure When SearchMethod is Specified as 'lsqnonlin’

Field Description Default
Name
Function |Termination tolerance on the loss function that the software le-5
Toleranc |minimizes to determine the estimated parameter values,
e specified as a positive scalar.
The value of FunctionTolerance is the same as that of
opt.SearchOptions.Advanced.TolFun.
StepTole |Termination tolerance on the estimated parameter values, le-6
rance specified as a positive scalar.
The value of StepTolerance is the same as that of
opt.SearchOptions.Advanced.TolX.
MaxItera |[Maximum number of iterations during loss-function 20
tions minimization, specified as a positive integer. The iterations stop
when MaxIterations is reached or another stopping criterion
is satisfied, such as FunctionTolerance.
The value of MaxIterations is the same as that of
opt.SearchOptions.Advanced.MaxIter.
Advanced |Advanced search settings, specified as an option set for Use

lsgnonlin.

For more information, see the Optimization Options table in
“Optimization Options” (Optimization Toolbox).

optimset('1lsgnonl
in') to create a
default option set.

1-119

1 Functions

SearchOptions Structure When SearchMethod is Specified as ' fmincon'

Field Name Description Default

Algorithm fmincon optimization ‘sqp'
algorithm, specified as one of
the following:

e 'sqgp' — Sequential
quadratic programming
algorithm. The algorithm
satisfies bounds at all
iterations, and it can recover
from NaN or Inf results. It is
not a large-scale algorithm.
For more information, see
“Large-Scale vs. Medium-
Scale Algorithms”
(Optimization Toolbox).

* ‘'trust-region-
reflective' — Subspace
trust-region method based
on the interior-reflective
Newton method. It is a large-
scale algorithm.

 ‘'interior-point' —
Large-scale algorithm that
requires Optimization
Toolbox software. The
algorithm satisfies bounds at
all iterations, and it can
recover from NaN or Inf
results.

e 'active-set' — Requires
Optimization Toolbox
software. The algorithm can
take large steps, which adds
speed. It is not a large-scale
algorithm.

For more information about the
algorithms, see “Constrained
Nonlinear Optimization
Algorithms” (Optimization
Toolbox) and “Choosing the
Algorithm” (Optimization
Toolbox).

1-120

bjOptions

Field Name Description Default

FunctionTolerance Termination tolerance on the le-6

loss function that the software
minimizes to determine the
estimated parameter values,
specified as a positive scalar.

StepTolerance Termination tolerance on the le-6

estimated parameter values,
specified as a positive scalar.

MaxIterations Maximum number of iterations |100

during loss function
minimization, specified as a
positive integer. The iterations
stop when MaxIterations is
reached or another stopping
criterion is satisfied, such as
FunctionTolerance.

Advanced — Additional advanced options
structure

Additional advanced options, specified as a structure with the following fields:

ErrorThreshold — Specifies when to adjust the weight of large errors from quadratic to linear.

Errors larger than ErrorThreshold times the estimated standard deviation have a linear weight
in the loss function. The standard deviation is estimated robustly as the median of the absolute
deviations from the median of the prediction errors, divided by 0. 7. For more information on
robust norm choices, see section 15.2 of [2].

ErrorThreshold = 0 disables robustification and leads to a purely quadratic loss function.
When estimating with frequency-domain data, the software sets ErrorThreshold to zero. For
time-domain data that contains outliers, try setting ErrorThreshold to 1.6.

Default: 0

MaxSize — Specifies the maximum number of elements in a segment when input-output data is
split into segments.

MaxSize must be a positive integer.

Default: 250000
StabilityThreshold — Specifies thresholds for stability tests.

StabilityThreshold is a structure with the following fields:

* s — Specifies the location of the right-most pole to test the stability of continuous-time models.
A model is considered stable when its right-most pole is to the left of s.

Default: 0

* z — Specifies the maximum distance of all poles from the origin to test stability of discrete-
time models. A model is considered stable if all poles are within the distance z from the origin.

1-121

1 Functions

Default: 1+sqrt(eps)
* AutoInitThreshold — Specifies when to automatically estimate the initial condition.

The initial condition is estimated when

|Vp, 2 — Ymeas|

> AutolnitThreshold
1Yo, e = Ymeas||

* Vmeas 1S the measured output.
* Vp.is the predicted output of a model estimated using zero initial states.
* Vpeis the predicted output of a model estimated using estimated initial states.

Applicable when InitialConditionis 'auto'.

Default: 1.05

Output Arguments

opt — Options set for bj
bjOptions option set

Option set for bj, returned as an bjOptions option set.

Examples

Create Default Options Set for Box-Jenkins Estimation

opt = bjOptions;

Specify Options for Box-Jenkins Estimation

Create an options set for bj using zero initial conditions for estimation. Set Display to 'on".
opt = bjOptions('InitialCondition', 'zero', 'Display','on');

Alternatively, use dot notation to set the values of opt.

opt = bjOptions;
opt.InitialCondition = 'zero';
opt.Display = 'on';

Compatibility Considerations

Renaming of Estimation and Analysis Options

The names of some estimation and analysis options were changed in R2018a. Prior names still work.
For details, see the R2018a release note “Renaming of Estimation and Analysis Options”.

1-122

bjOptions

References

[1] Wills, Adrian, B. Ninness, and S. Gibson. “On Gradient-Based Search for Multivariable System
Estimates”. Proceedings of the 16th IFAC World Congress, Prague, Czech Republic, July 3-8,
2005. Oxford, UK: Elsevier Ltd., 2005.

[2] Ljung, L. System Identification: Theory for the User. Upper Saddle River, NJ: Prentice-Hall PTR,
1999.

See Also
bj | idfilt
Topics

“Loss Function and Model Quality Metrics”

Introduced in R2012a

1-123

1 Functions

blkdiag

Block-diagonal concatenation of models

Syntax

sys = blkdiag(sysl,sys2,...,sysN)

Description
sys = blkdiag(sysl,sys2,...,sysN) produces the aggregate system

sysl 0 .. O
0 sys2 .
: . .0
0 ... 0sysN
blkdiag is equivalent to append.

Examples

Perform Block-Diagonal Concatenation

Perform block-diagonal concatenation of a transfer function model and a state-space model.
Create the SISO continuous-time transfer function model, 1/s.

sysl = tf(1,[1 0]);

Create a SISO continuous-time state-space model with state-space matrices 1,2,3, and 4.
sys2 = ss(1,2,3,4);

Concatenate sys1, a SISO static gain system, and sys2. The resulting model is a 3-input, 3-output
state-space model.

sys = blkdiag(sysl,10,sys2)
sys =
A =
x1l x2
x1 0 0
X2 0 1
B —
ul u2 u3

1-124

blkdiag

x1 x2
yl 1 0
y2 0 0
y3 0 3
D =

ul u2 u3
yl 0 0 0
y2 0 10 0
y3 0 0 4

Continuous-time state-space model.

Alternatively, use the append command.

sys = append(sysl,10,sys2);

See Also
append | feedback | parallel | series

Introduced in R2009a

1-125

1 Functions

1-126

bode

Bode plot of frequency response, or magnitude and phase data

Syntax

bode
bode
bode
bode

Sys)

sysl,sys2,...,sysN)
sysl,LineSpecl,...,sysN,LineSpecN)
W)

P

[mag,phase,wout] bode(sys)
[mag,phase,wout] bode(sys,w)
[mag,phase,wout, sdmag, sdphase] = bode(sys,w)

Description

bode(sys) creates a Bode plot of the frequency response of a dynamic system model sys. The plot
displays the magnitude (in dB) and phase (in degrees) of the system response as a function of
frequency. bode automatically determines frequencies to plot based on system dynamics.

If sys is a multi-input, multi-output (MIMO) model, then bode produces an array of Bode plots, each
plot showing the frequency response of one I/O pair.

bode(sysl,sys2,...,sysN) plots the frequency response of multiple dynamic systems on the
same plot. All systems must have the same number of inputs and outputs.

bode(sysl,LineSpecl,...,sysN,LineSpecN) specifies a color, line style, and marker for each
system in the plot.

bode(,w) plots system responses for frequencies specified by w.

* Ifwis a cell array of the form {wmin,wmax}, then bode plots the response at frequencies ranging
between wmin and wmax.

+ Ifwis avector of frequencies, then bode plots the response at each specified frequency.
You can use w with any of the input-argument combinations in previous syntaxes.

[mag,phase,wout] = bode(sys) returns the magnitude and phase of the response at each
frequency in the vector wout. The function automatically determines frequencies in wout based on
system dynamics. This syntax does not draw a plot.

[mag, phase,wout] = bode(sys,w) returns the response data at the frequencies specified by w.

+ Ifwis a cell array of the form {wmin,wmax}, then wout contains frequencies ranging between
wmin and wmax.

* Ifwis a vector of frequencies, then wout = w.
[mag, phase,wout, sdmag,sdphase] = bode(sys,w) also returns the estimated standard

deviation of the magnitude and phase values for the identified model sys. If you omit w, then the
function automatically determines frequencies in wout based on system dynamics.

bode

Examples
Bode Plot of Dynamic System
Create a Bode plot of the following continuous-time SISO dynamic system.

_ s*40.1s+7.5
s +0.12s3 + 952"

H=tf([10.17.5],[10.12 90 0]);

bode(H)
Bode Diagram

E =
g _1 |'_'; | .-\--\"""\-.____x. III
— i |
% H""H-\.___KH III
= =20 F f
= |]
[y | Rt
5] —
= -30 T

40 —

-5 I.n,

i
[
S |
& 90 |I I|
& | ||
& 135 .
0 f
A\
-180 = —
10"

Frequency (rad/s)

bode automatically selects the plot range based on the system dynamics.

Bode Plot at Specified Frequencies

10"

Create a Bode plot over a specified frequency range. Use this approach when you want to focus on

the dynamics in a particular range of frequencies.

H=1tf([-0.1,-2.4,-181,-1950],[1,3.3,990,2600]);

bode(H, {1,100})
grid on

1-127

1 Functions

Bode Diagram

= [
o =
T
I

]
T

i
=
T
|
|
)
,
1

Magnitude (dB)
||
I
I|
|
|
S~

\
|

FPhase (deq)

0= ' ~
10° 10! 102
Frequency (rad/s)

The cell array {1, 100} specifies the minimum and maximum frequency values in the Bode plot.
When you provide frequency bounds in this way, the function selects intermediate points for
frequency response data.

Alternatively, specify a vector of frequency points to use for evaluating and plotting the frequency
response.

w=[1510 15 20 23 31 40 44 50 85 100];
bode(H,w,"'.-")
grid on

1-128

bode

Bode Diagram
10 .

—

Magnitude (dB)

&
o

i
Lad
—

FPhase (deq)

45 = '
10° 10! 102
Frequency (rad/s)

bode plots the frequency response at the specified frequencies only.

Compare Bode Plots of Several Dynamic Systems

Compare the frequency response of a continuous-time system to an equivalent discretized system on

the same Bode plot.
Create continuous-time and discrete-time dynamic systems.

H=1tf([10.17.5],[10.12 90 0]);
Hd = c2d(H,0.5, 'zoh");

Create a Bode plot that displays both systems.
bode (H,Hd)

1-129

1 Functions

Bode Diagram
100 . :
o 50 TT— .
% ‘“‘\J‘Ir\hr::_f_::;:' —
= 50F [
-100 : :
0 . .
3 ol ‘1 -
E '-\.ll:: l\
Jule]
®)
£ 180 _— [1=
o —]
N
"'\-\.H\.
270 : — '
1072 10! ik 10

Frequency (rad/s)

The Bode plot of a discrete-time system includes a vertical line marking the Nyquist frequency of the
system.

Bode Plot with Specified Line Attributes

Specify the line style, color, or marker for each system in a Bode plot using the LineSpec input
argument.

H=tf([10.17.5],[10.12 9 0 0]);

Hd = c2d(H,0.5, 'zoh");
bode(H, 'r',Hd, 'b--")

1-130

bode

Bode Diagram

100 - -
@ 50 ¢ T]
) —
2 T
= 0r “hihﬁﬂﬂhh N _
g} --_\J ""lc.-:“‘__ 5
g
= -50F :

-100 : :

0 . .
% ol .
E '-\.-r.- ‘
@ |
£ 180 ———— 11
I:L —— — 1
e,
T,
T
270 ~ : —
102 10°"1 10¢ 10

Frequency (rad/s)

The first LineSpec, 'r', specifies a solid red line for the response of H. The second LineSpec,
'b--', specifies a dashed blue line for the response of Hd.

Obtain Magnitude and Phase Data
Compute the magnitude and phase of the frequency response of a SISO system.

If you do not specify frequencies, bode chooses frequencies based on the system dynamics and
returns them in the third output argument.

H=tf([10.17.5],[10.12 90 0]);
[mag, phase,wout] = bode(H);

Because H is a SISO model, the first two dimensions of mag and phase are both 1. The third
dimension is the number of frequencies in wout.

size(mag)
ans = 1x3

1 1 41
length(wout)

1-131

1 Functions

ans = 41

Thus, each entry along the third dimension of mag gives the magnitude of the response at the
corresponding frequency in wout.

Magnitude and Phase of MIMO System

For this example, create a 2-output, 3-input system.

rng(0, 'twister'); % For reproducibility
H = rss(4,2,3);

For this system, bode plots the frequency responses of each I/O channel in a separate plot in a single

figure.
bode(H)
Bode Diagram
From: In(1) From: In(2) From: In{3)
c 0 I— . I
-oil- I "-.__\\ "-._H‘
= \ \
=
— 40
o
o — 180 ——
@ 5 gp
@O B
o T~ [~
- ™ a0 ~— —
m E—
2g o E—
o = — —
3 A/ T
3 520 Hhh“th
=2 oo
5 & 4
w
=] — —
El18L = ﬁ“mm
5 480 T
o |
g 0 T
= .90 —
107 107 10407 107 10407 107 10-

Frequency (rad/s)

Compute the magnitude and phase of these responses at 20 frequencies between 1 and 10 radians.

w = logspace(0,1,20);
[mag,phase]l = bode(H,w);

mag and phase are three-dimensional arrays, in which the first two dimensions correspond to the
output and input dimensions of H, and the third dimension is the number of frequencies. For instance,
examine the dimensions of mag.

1-132

bode

size(mag)
ans = 1Ix3

2 3 20

Thus, for example, mag(1,3,10) is the magnitude of the response from the third input to the first
output, computed at the 10th frequency in w. Similarly, phase(1,3,10) contains the phase of the
same response.

Bode Plot of Identified Model

Compare the frequency response of a parametric model, identified from input/output data, to a
nonparametric model identified using the same data.

Identify parametric and nonparametric models based on data.

load iddata2 z2;

w = linspace(0,10*pi,128);

sys np = spa(z2,[],w);

sys p = tfest(z2,2);

Using the spa and tfest commands requires System Identification Toolbox™ software.
Sys_np is a nonparametric identified model. sys p is a parametric identified model.

Create a Bode plot that includes both systems.

bode(sys np,sys p,w);
legend('sys-np', 'sys-p')

1-133

1 Functions

Bode Diagram
From: ul To: vl
30 - -
— 20 r . 1
- I
o 107 \ 1
% 0 F \x xh, §
oh U ‘_/r_“'., -
L, .-x.-"hlﬂ'?r I
E _-Ir- L W ||I~| I-[
wr i J
20 . L
360 e T
) — sys-np
= Sy5-p
& of e 1
ﬂLhJ T o J,f\
;fﬂ 360 [Vs
720 : :
10? 10

Frequency (rad/s)

You can display the confidence region on the Bode plot by right-clicking the plot and selecting
Characteristics > Confidence Region.

Obtain Magnitude and Phase Standard Deviation Data of Identified Model

Compute the standard deviation of the magnitude and phase of an identified model. Use this data to
create a 30 plot of the response uncertainty.

Identify a transfer function model based on data. Obtain the standard deviation data for the
magnitude and phase of the frequency response.

load iddata2 z2;

sys p = tfest(z2,2);

w = linspace(0,10*pi,128);

[mag, ph,w, sdmag, sdphase] = bode(sys p,w);

Using the tfest command requires System Identification Toolbox™ software.

sys_p is an identified transfer function model. sdmag and sdphase contain the standard deviation
data for the magnitude and phase of the frequency response, respectively.

Use the standard deviation data to create a 30 plot corresponding to the confidence region.

1-134

bode

mag = squeeze(mag);
sdmag = squeeze(sdmag);
semilogx(w,mag, 'b',w,mag+3*sdmag, 'k:"',w,mag-3*sdmag, 'k:"');

12 ; ;

107! 107 10" 102

Input Arguments

sys — Dynamic system
dynamic system model | model array

Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system
models. Dynamic systems that you can use include:
* Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.
* Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models
requires Robust Control Toolbox™ software.)
* For tunable control design blocks, the function evaluates the model at its current value for
both plotting and returning frequency response data.

+ For uncertain control design blocks, the function plots the nominal value and random samples
of the model. When you use output arguments, the function returns frequency response data
for the nominal model only.

* Frequency-response data models such as frd models. For such models, the function plots the
response at frequencies defined in the model.

1-135

1 Functions

1-136

* Identified LTT models, such as idtf, idss, or idproc models. For such models, the function can
also plot confidence intervals and return standard deviations of the frequency response. See
“Bode Plot of Identified Model” on page 1-133.

If sys is an array of models, the function plots the frequency responses of all models in the array on
the same axes.

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a string or vector of one, two, or three characters. The
characters can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line. For more information about configuring this argument, see the
LineSpec input argument of the plot function.

Example: 'r--"' specifies a red dashed line
Example: '*b"' specifies blue asterisk markers
Example: 'y ' specifies a yellow line

w — Frequencies
{wmin,wmax} | vector

Frequencies at which to compute and plot frequency response, specified as the cell array
{wmin,wmax} or as a vector of frequency values.

» Ifwisa cell array of the form {wmin,wmax}, then the function computes the response at
frequencies ranging between wmin and wmax.

« Ifwis a vector of frequencies, then the function computes the response at each specified
frequency. For example, use Logspace to generate a row vector with logarithmically spaced
frequency values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the
model.

Output Arguments

mag — Magnitude of system response
3-D array

Magnitude of the system response in absolute units, returned as a 3-D array. The dimensions of this
array are (number of system outputs) X (number of system inputs) X (number of frequency points).

» For SISO systems, mag (1, 1, k) gives the magnitude of the response at the kth frequency in w or
wout. For an example, see “Obtain Magnitude and Phase Data” on page 1-131.

» For MIMO systems, mag(1i,j, k) gives the magnitude of the response at the kth frequency from
the jth input to the ith output. For an example, see “Magnitude and Phase of MIMO System” on
page 1-132.

To convert the magnitude from absolute units to decibels, use:

magdb = 20*1ogl0(mag)

bode

phase — Phase of system response
3-D array

Phase of the system response in degrees, returned as a 3-D array. The dimensions of this array are
(number of outputs) x (number of inputs) x (number of frequency points).

» For SISO systems, mag(1, 1, k) gives the phase of the response at the kth frequency in w or wout.
For an example, see “Obtain Magnitude and Phase Data” on page 1-131.

» For MIMO systems, mag(1i,j, k) gives the phase of the response at the kth frequency from the
jth input to the ith output. For an example, see “Magnitude and Phase of MIMO System” on page
1-132.

wout — Frequencies
vector

Frequencies at which the function returns the system response, returned as a column vector. The
function chooses the frequency values based on the model dynamics, unless you specify frequencies
using the input argument w.

Frequency values are in radians per TimeUnit, where TimeUnit is the value of the TimeUnit
property of sys.

sdmag — Standard deviation of magnitude
3-D array | []

Estimated standard deviation of the magnitude of the response at each frequency point, returned as a
3-D array. sdmag has the same dimensions as mag.

If sys is not an identified LTI model, sdmagis [].

sdphase — Standard deviation of phase
3-D array | []

Estimated standard deviation of the phase of the response at each frequency point, returned as a 3-D
array. sdphase has the same dimensions as phase.

If sys is not an identified LTI model, sdphaseis [].

Tips

* When you need additional plot customization options, use bodeplot instead.

Algorithms

bode computes the frequency response as follows:

Compute the zero-pole-gain (zpk) representation of the dynamic system.

2 Evaluate the gain and phase of the frequency response based on the zero, pole, and gain data for
each input/output channel of the system.

» For continuous-time systems, bode evaluates the frequency response on the imaginary axis s
= jw and considers only positive frequencies.

1-137

1 Functions

» For discrete-time systems, bode evaluates the frequency response on the unit circle. To
facilitate interpretation, the command parameterizes the upper half of the unit circle as:

z=erT5, 0=sw=swy=

RN
T’
where T is the sample time and wy is the Nyquist frequency. The equivalent continuous-time
frequency w is then used as the x-axis variable. Because H (erTS) is periodic with period 2wy,

bode plots the response only up to the Nyquist frequency wy. If sys is a discrete-time model
with unspecified sample time, bode uses T, = 1.

See Also
bodeplot | freqresp | nyquist | spectrum | step
Topics

“Plot Bode and Nyquist Plots at the Command Line”
“Dynamic System Models”

Introduced before R2006a

1-138

bodemag

bodemag

Magnitude-only Bode plot of frequency response

Syntax

bodemag
bodemag
bodemag
bodemag

sys)

sysl,sys2,...,sysN)

sysl,LineSpecl,...,sysN,LineSpecN)
W)

—~ o~ o~ o~

Description

bodemag enables you to generate magnitude-only plots to visualize the magnitude frequency
response of a dynamic system.

For a more comprehensive function, see bode. bode provides magnitude and phase information. If
you have System Identification toolbox, bode also returns the computed values, including statistical
estimates.

For more customizable plotting options, see bodeplot.

bodemag(sys) creates a Bode magnitude plot of the frequency response of the dynamic system
model sys. The plot displays the magnitude (in dB) of the system response as a function of frequency.
bodemag automatically determines frequencies to plot based on system dynamics.

If sys is a multi-input, multi-output (MIMO) model, then bodemag produces an array of Bode
magnitude plots in which each plot shows the frequency response of one I/O pair.

bodemag(sysl,sys2,...,sysN) plots the frequency response of multiple dynamic systems on the
same plot. All systems must have the same number of inputs and outputs.

bodemag(sysl,LineSpecl,...,sysN,LineSpecN) specifies a color, line style, and marker for
each system in the plot.

bodemag(,w) plots system responses for frequencies specified by w.

» Ifwis a cell array of the form {wmin,wmax}, then bodemag plots the response at frequencies
ranging between wmin and wmax.

+ Ifwis avector of frequencies, then bodemag plots the response at each specified frequency.

You can use this syntax with any of the input-argument combinations in previous syntaxes.

Examples

Bode Magnitude Plot of Dynamic System

Create a Bode magnitude plot of the following continuous-time SISO dynamic system.

2
s“+0.1s+7.5
H(s) =
(5) s*+0.12s3 + 952

1-139

1 Functions

H=1tf([10.17.5],[10.12 90 0]);
bodemag (H)

Bode Diagram

Magnitude (dB)

Frequency (rad/s)

bodemag automatically selects the plot range based on the system dynamics.

Bode Magnitude Plot at Specified Frequencies

Create a Bode magnitude plot over a specified frequency range. Use this approach when you want to
focus on the dynamics in a particular range of frequencies.

H=1tf([-0.1,-2.4,-181,-1950],[1,3.3,990,2600]);
bodemag(H, {1,100})
grid on

1-140

bodemag

Bode Diagram
15 .
10 | |l -
_ |
I II |
@ —_— [
= —— f
E =i e / || |
S ™~ A
S a0t — / \ |
- . |
15t \ J
20 \ g
-25 — ' .
10° 10! 102

Frequency (rad/s)

The cell array {1, 100} specifies the minimum and maximum frequency values in the Bode
magnitude plot. When you provide frequency bounds in this way, the function selects intermediate

points for frequency response data.
Alternatively, specify a vector of frequency points to use for evaluating and plotting the frequency
response.

w=[1510 15 20 23 31 40 44 50 85 100];
bodemag(H,w,"'.-")
grid on

1-141

1 Functions

Bode Diagram

10 T

— Ln

(4]

Magnitude (dB)

i
Ln

—

2

25

=

10" 10
Frequency (rad/s)

bodemag plots the frequency response at the specified frequencies only.

Compare Bode Magnitude Plots of Several Dynamic Systems

Compare the magnitude of the frequency response of a continuous-time system to an equivalent
discretized system on the same Bode plot.

Create continuous-time and discrete-time dynamic systems.

H=1tf([10.17.5],[10.12 90 0]);
Hd = c2d(H,0.5, 'zoh");

Create a Bode magnitude plot that displays the responses of both systems.

bodemag (H,Hd)

1-142

bodemag

Bode Diagram

Magnitude (dB)

II'l
20 r I| \ -
.

-80 — ' =
102 10°"1 10¢ 10
Frequency (rad/s)

The Bode magnitude plot of a discrete-time system includes a vertical line marking the Nyquist
frequency of the system.

Bode Magnitude Plot with Specified Line and Marker Attributes

Specify the color, linestyle, or marker for each system in a Bode magnitude plot using the LineSpec
input arguments.

H=tf([10.17.5],[10.12 9 0 0]);

Hd = c2d(H,0.5, 'zoh");
bodemag(H, 'r',Hd, 'b--")

1-143

1 Functions

Bode Diagram

Magnitude (dB)

40 3 R
|
60
80 = ' =
102 10°1 Ik 10°

Frequency (rad/s)

The first LineSpec argument 'r' specifies a solid red line for the response of H. The second
LineSpec argument 'b- - ' specifies a dashed blue line for the response of Hd.

Magnitude of MIMO System

For this example, create a 2-output, 3-input system.

rng(0, 'twister'); %
H = rss(4,2,3);

For reproducibility
For this system, bodemag plots the magnitude-only frequency responses of each I/O channel in a

separate plot in a single figure.

bodemag (H)

1-144

bodemag

Magnitude (dB)

To Cut(1)

To Cut(2)

=

—

[’
==

—

Bode Diagram
From: In(1) From: In(2) From: In{3)
“‘R -
\‘ \\x
\ N
*,
—

[

Input Arguments

sys — Dynamic system
dynamic system model | model array

10402

Frequency (rad/s

10"

010

(=]

Dynamic system, specified as a SISO or MIMO dynamic system model or array of dynamic system
models. Dynamic systems that you can use include:

* Continuous-time or discrete-time numeric LTI models, such as tf, zpk, or ss models.

* Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models
requires Robust Control Toolbox software.)

both plotting and returning frequency response data.

for the nominal model only.

* Frequency-response data models such as frd models. For such models, the function plots the
response at frequencies defined in the model.

* Identified LTI models, such as idtf, idss, or idproc models.

For tunable control design blocks, the function evaluates the model at its current value for

For uncertain control design blocks, the function plots the nominal value and random samples
of the model. When you use output arguments, the function returns frequency response data

If sys is an array of models, the function plots the frequency responses of all models in the array on

the same axes.

1-145

1 Functions

1-146

LineSpec — Line style, marker, and color
character vector | string

Line style, marker, and color, specified as a string or vector of one, two, or three characters. The
characters can appear in any order. You do not need to specify all three characteristics (line style,
marker, and color). For example, if you omit the line style and specify the marker, then the plot shows
only the marker and no line. For more information about configuring this argument, see the
LineSpec input argument of the plot function.

Example: 'r--' specifies a red dashed line

Example: '*b' specifies blue asterisk markers

Example: 'y ' specifies a yellow line

w — Frequencies
{wmin,wmax} | vector

Frequencies at which to compute and plot frequency response, specified as the cell array
{wmin,wmax} or as a vector of frequency values.

* Ifwis a cell array of the form {wmin,wmax}, then the function computes the index at frequencies
ranging between wmin and wmax.

+ Ifwis a vector of frequencies, then the function computes the index at each specified frequency.
For example, use logspace to generate a row vector with logarithmically spaced frequency
values.

Specify frequencies in units of rad/TimeUnit, where TimeUnit is the TimeUnit property of the
model.

Algorithms

bodemag computes the frequency response as follows:

Compute the zero-pole-gain (zpk) representation of the dynamic system.

Evaluate the gain and phase of the frequency response based on the zero, pole, and gain data for

each input/output channel of the system.

» For continuous-time systems, bodemag evaluates the frequency response on the imaginary
axis s = jw and considers only positive frequencies.

* For discrete-time systems, bodemag evaluates the frequency response on the unit circle. To
facilitate interpretation, the command parameterizes the upper half of the unit circle as:

where T is the sample time and wy is the Nyquist frequency. The equivalent continuous-time
frequency w is then used as the x-axis variable. Because H (erTS) is periodic with period 2wy,

bodemag plots the response only up to the Nyquist frequency wy. If sys is a discrete-time
model with unspecified sample time, bodemag uses T, = 1.

See Also
bode | bodeplot | freqresp | nyquist | spectrum | step

bodemag

Topics
“Plot Bode and Nyquist Plots at the Command Line”
“Dynamic System Models”

Introduced in R2012a

1-147

1 Functions

bodeoptions

Create list of Bode plot options

Syntax

P
P

Description

P = bodeoptions returns a default set of plot options for use with the bodeplot. You can use
these options to customize the Bode plot appearance using the command line. This syntax is useful
when you want to write a script to generate plots that look the same regardless of the preference

bodeoptions
bodeoptions('cstprefs')

settings of the MATLAB session in which you run the script.

P = bodeoptions('cstprefs') initializes the plot options with the options you selected in the
Control System and System Identification Toolbox Preferences Editor. For more information about the
editor, see “Toolbox Preferences Editor”. This syntax is useful when you want to change a few plot
options but otherwise use your default preferences. A script that uses this syntax may generate

results that look different when run in a session with different preferences.

The following table summarizes the Bode plot options.

Option

Description

Title, XLabel, YLabel

Label text and style, specified as a structure with the following fields:

* String — Label text, specified as a character vector, for example
"Amplitude’.

* FontSize — Default: 8

* FontWeight — Default: 'Normal'

* Font Angle — Default: 'Normal'

* Color — Vector of RGB values ranging from 0 to 1. Default: [0,0,0]

* Interpreter — Default: 'tex!'

TickLabel Tick label style, specified as a structure with the following fields:

* FontSize Default: 8

* FontWeight — Default: 'Normal'

* Font Angle — Default: 'Normal'

* Color — Vector of RGB values ranging from 0 to 1. Default: [0,0,0]
Grid Show or hide the grid

Specified as one of the following values: 'off' | 'on'
Default: 'off"'

1-148

bodeoptions

Option

Description

GridColor

Color of the grid lines

Specified as one of the following: Vector of RGB values in the range [0,1] |
character vector of color name | 'none'. For example, for yellow color, specify as
one of the following: [1 1 0], 'yellow', or 'y".

Default: [0.15,0.15,0.15]

X1limMode, Y1limMode

Axis limit modes. Default: 'auto’

Xlim, Ylim Axes limits, specified as an array of the form [min, max]

I0Grouping Grouping of input-output pairs
Specified as one of the following values: 'none' |'inputs'|'outputs'|'all’
Default: 'none’

InputLabels, Input and output label styles

OutputLabels

InputVisible, Visibility of input and output channels

OQutputVisible

ConfidenceRegionNumbe
rSD

Number of standard deviations to use to plotting the response confidence region
(identified models only).

Default: 1.

1-149

1 Functions

Option Description
FreqUnits Frequency units, specified as one of the following values:
+ 'Hz'
* 'rad/second’
e 'rpm'
* 'kHz'
e 'MHz'
« 'GHz'
* ‘'rad/nanosecond’
* 'rad/microsecond’
* 'rad/millisecond'’
* ‘'rad/minute’
* 'rad/hour'’
* 'rad/day'
* 'rad/week'
* ‘'rad/month’
* 'rad/year'
* 'cycles/nanosecond'
* 'cycles/microsecond’
+ ‘'cycles/millisecond’
* 'cycles/hour'
+ 'cycles/day'
*+ 'cycles/week'
* 'cycles/month'
+ 'cycles/year'
FreqScale Frequency scale
Specified as one of the following values: 'linear' | 'log'
Default: 'log'
MagUnits Magnitude units
Specified as one of the following values: 'dB' | 'abs'
Default: 'dB'
MagScale Magnitude scale
Specified as one of the following values: 'linear' | 'log"
Default: 'linear'
MagVisible Magnitude plot visibility
Specified as one of the following values: 'on' | 'off"'
Default: 'on'
MagLowerLimMode Enables a lower magnitude limit
Specified as one of the following values: 'auto' | 'manual’
Default: 'auto’
MagLowerLim Specifies the lower magnitude limit

1-150

bodeoptions

Option Description
PhaseUnits Phase units
Specified as one of the following values: 'deg' | 'rad'
Default: 'deg’
PhaseVisible Phase plot visibility
Specified as one of the following values: 'on' | 'off"'
Default: 'on'
PhaseWrapping Enables phase wrapping
Specified as one of the following values: 'on' | 'off"'
When you set PhaseWrapping to 'on', the plot wraps accumulated phase at the
value specified by the PhaseWrappingBranch property.
Default: 'off
PhaseWrappingBranch Phase value at which the plot wraps accumulated phase when PhaseWrapping is
setto ‘on"'.
Default: -180 (phase wraps into the interval [-1802,1809))
PhaseMatching Enables phase matching
Specified as one of the following values: 'on' | 'off"'
Default: 'off!
PhaseMatchingFreq Frequency for matching phase
PhaseMatchingValue The value to which phase responses are matched closely

Examples

Create Bode Plot with Custom Settings

Create a Bode plot that suppresses the phase plot and uses frequency units Hz instead of the default
radians/second. Otherwise, the plot uses the settings that are saved in the toolbox preferences.

First, create an options set based on the toolbox preferences.

opts = bodeoptions('cstprefs');

Change properties of the options set.

opts.PhaseVisible = 'off';

opts.FregUnits

|HZ|;

Create a plot using the options.

h = bodeplot(tf(1,[1,1]),0pts);

1-151

1 Functions

1-152

Bode Diagram

,_..L
f
|

i
(8]
T
i

Magnitude (dB)

ael nd Al

10

[

Frequency (Hz)

Depending on your own toolbox preferences, the plot you obtain might look different from this plot.
Only the properties that you set explicitly, in this example PhaseVisible and FreqUnits, override
the toolbox preferences.

Custom Plot Settings Independent of Preferences

Create a Bode plot that uses 14-point red text for the title. This plot should look the same, regardless
of the preferences of the MATLAB session in which it is generated.

First, create a default options set.
opts = bodeoptions;
Change properties of the options set.

opts.Title.FontSize 4

=1
opts.Title.Color = [1 0O
opts.FreqUnits = 'Hz';

0];

Create a plot using the options.

h = bodeplot(tf(1l,[1,1]),0pts);

bodeoptions

A0

Magnitude (dB)
B
T

o B

Fhase jdeq)
#
T

10

Frequency (Hz)

Because opts begins with a fixed set of options, the plot result is independent of the toolbox
preferences of the MATLAB session.

See Also

bode | bodeplot | getoptions | setoptions | showConfidence

Introduced in R2012a

1-153

1 Functions

1-154

bodeplot

Plot Bode frequency response with additional plot customization options

Syntax

h = bodeplot(sys)
bodeplot(sys)
bodeplot(sysl,sys2,...)
bodeplot (AX,...)
bodeplot(..., plotoptions)
bodeplot(sys,w)

Description

h = bodeplot(sys) plot the Bode magnitude and phase of the dynamic system model sys and
returns the plot handle h to the plot. You can use this handle to customize the plot with the
getoptions and setoptions commands.

bodeplot(sys) draws the Bode plot of the model sys. The frequency range and number of points
are chosen automatically.

bodeplot(sysl,sys2,...) graphs the Bode response of multiple models sys1,sys2,... on a single
plot. You can specify a color, line style, and marker for each model, as in

bodeplot(sysl, 'r',sys2,'y--"',sys3,'gx")
bodeplot (AX, ...) plots into the axes with handle AX.

bodeplot(..., plotoptions) plots the Bode response with the options specified in
plotoptions. Type

help bodeoptions

for a list of available plot options. See “Match Phase at Specified Frequency” on page 1-156 for an
example of phase matching using the PhaseMatchingFreq and PhaseMatchingValue options.

bodeplot(sys,w) draws the Bode plot for frequencies specified by w. Whenw = {wmin,wmax},
the Bode plot is drawn for frequencies between wmin and wmax (in rad/TimeUnit, where TimeUnit
is the time units of the input dynamic system, specified in the TimeUnit property of sys.). When w is
a user-supplied vector w of frequencies, in rad/TimeUnit, the Bode response is drawn for the specified
frequencies.

See logspace to generate logarithmically spaced frequency vectors.

Examples

Change Bode Plot Options with Plot Handle

Generate a Bode plot.

bodeplot

sys = rss(5);
h = bodeplot(sys);

Bode Diagram

/ \M_ |
-~ o
_Fﬂ“"f
''_,_,—I-'_
.f'"f-_.-.
fﬂ_,f
r— \ |
""-\.___'_'_,_,—:—"'__'_'_'_'_'_'_'_'_'_'_'_‘_'_
-2

10° 10!
Frequency (rad/s)

Magnitude (dB)
w B b
= F= M -

b
s
T

—

e
B

[

FPhase (deg)
[

Change the units to Hz and suppress the phase plot. To do so, edit properties of the plot handle, h.

setoptions(h, 'FreqUnits', 'Hz', 'PhaseVisible"', 'off');

1-155

1 Functions

Bode Diagram

4.2 1

Magnitude (dB)

3.4
10
Frequency (Hz)

The plot automatically updates when you call setoptions.

Match Phase at Specified Frequency

Create a Bode plot of a dynamic system.

sys = tf(1,[1 1]);
h = bodeplot(sys);

1-156

10°

bodeplot

Bode Diagram

Magnitude (dB)

Phase (deq)
>

10°
Frequency (rad/s)

10

Fix the phase at 1 rad/s to 750 degrees. To do so, get the plot properties. Then alter the properties
PhaseMatchingFreq and PhaseMatchingValue to match a phase to a specified frequency.

p = getoptions(h);
p.PhaseMatching = 'on';
p.PhaseMatchingFreq = 1;
p.PhaseMatchingValue = 750;

Update the plot.

setoptions(h,p);

1-157

1 Functions

1-158

Bode Diagram

Magnitude (dB)
/

]
Cad
—

I I I s e — -

=]
=
=]

0 10" 10 1

Frequency (rad/s)

The first bode plot has a phase of -45 degrees at a frequency of 1 rad/s. Setting the phase matching
options so that at 1 rad/s the phase is near 750 degrees yields the second Bode plot. Note that,
however, the phase can only be -45 + N*360, where N is an integer, and so the plot is set to the
nearest allowable phase, namely 675 degrees (or 2*360 - 45 = 675).

Display Confidence Regions of Identified Models

Compare the frequency responses of identified state-space models of order 2 and 6 along with their 2
o confidence regions.

load iddatal
sysl = n4sid(zl1l, 2)
sys2 = n4sid(zl, 6)

Both models produce about 70% fit to data. However, sys2 shows higher uncertainty in its frequency
response, especially close to Nyquist frequency as shown by the plot:

w linspace(8,10*pi,256);
h bodeplot(sysl,sys2,w);
setoptions(h, 'PhaseMatching', 'on', 'ConfidenceRegionNumberSD',2);

bodeplot

Bode Diagram
- From:ul1 To: y1
20
m \
= A L S]
= 0 —
@ ——
= R
= R— -
=]
2201 -
=
== Ls
1135 T T T T T
.
| "‘\-\
a -—_.__‘_‘__‘_______ | "
D 180 + —
- 1&-'.- —_.___‘_-_‘.____ - I /,_.7
o T ~
a — -
L .,
£ 2257 | 1
_ |
_E?E 1 1 1 1 1
10 15 20 25 30

Frequency (rad/s)

Right-click the plot and select Characteristics > Confidence Region to turn on the confidence
region characteristic. Alternatively, type showConfidence(h) to plot the confidence region.

Frequency Response of Identified Parametric and Nonparametric Models

Compare the frequency response of a parametric model, identified from input/output data, to a
nonparametric model identified using the same data. Identify parametric and non-parametric models
based on data.

load iddata2 z2;

w = linspace(0,10*pi,128);
sys np = spa(z2,[]1,w);
sys p = tfest(z2,2);

spa and tfest require System Identification Toolbox™ software. sys np is a nonparametric
identified model. sys p is a parametric identified model.

Create a Bode plot that includes both systems.
opt = bodeoptions;

opt.PhaseMatching = 'on';
bodeplot(sys np,sys p,w,opt);

1-159

1 Functions

Bode Diagram
From: ul To w1
30 T . . . T
201 . R
) T
= 10p \ .
o AN o
= \
c .;}— i :- -
= |,:"I -
Yol
A0 (1Y
i i
_3} 1 1
':} T T

/

g-m- H A
@ - T
8 oot s AN
£ \\\.-' \
360 | A
14
450 - . — v
107 10

Frequency (rad/s)

Tips

You can change the properties of your plot, for example the units. For information on the ways to
change properties of your plots, see “Ways to Customize Plots” (Control System Toolbox).

See Also
bode | bodeoptions | getoptions | setoptions | showConfidence

Introduced before R2006a

1-160

c2d

c2d

Convert model from continuous to discrete time

Syntax

sysd = c2d(sysc,Ts)

sysd = c2d(sysc,Ts,method)
sysd = c2d(sysc,Ts,opts)

[sysd,G] = c2d()

Description

sysd = c2d(sysc,Ts) discretizes the continuous-time dynamic system model sysc using zero-
order hold on the inputs and a sample time of Ts.

sysd = c2d(sysc,Ts,method) specifies the discretization method.

sysd c2d(sysc,Ts,opts) specifies additional options for the discretization.

[sysd,G] = c2d(), where sysc is a state-space model, returns a matrix, G that maps the
continuous initial conditions x, and u, of the state-space model to the discrete-time initial state vector
x[0].

Examples

Discretize a Transfer Function
Discretize the following continuous-time transfer function:

s—1

H(s)=e 035 >2—= |
(®) s2+45+5

This system has an input delay of 0.3 s. Discretize the system using the triangle (first-order-hold)

approximation with sample time Ts = 0.1 s.

H=tf([1 -1],[1 4 5], 'InputDelay', 0.3);
Hd = c2d(H,0.1,'foh");

Compare the step responses of the continuous-time and discretized systems.

Step(Hll'llHdil"l)

1-161

1 Functions

Step Response
0.15 - . . . ; .

0.1

= 0.05

Amplitude

i
[}

-0.1

(8]

[
n

1.5 2 25 3
Time (seconds)

o
o
n

Discretize Model with Fractional Delay Absorbed into Coefficients

Discretize the following delayed transfer function using zero-order hold on the input, and a 10-Hz
sampling rate.

10

H(s) = e=0-25s '
(5) s+ 3s+ 10

h = tf(10,[1 3 10], 'IODelay',0.25);
hd = c2d(h,0.1)

0.01187 z*2 + 0.06408 z + 0.009721
z”2 - 1.655 z + 0.7408

Sample time: 0.1 seconds
Discrete-time transfer function.

In this example, the discretized model hd has a delay of three sampling periods. The discretization
algorithm absorbs the residual half-period delay into the coefficients of hd.

Compare the step responses of the continuous-time and discretized models.

1-162

c2d

step(h,'--",hd,"'-")

Discretize Model With Approximated Fractional Delay

Create a continuous-time state-space model with two states and an input delay.

sys = ss(tf([1,2],[1,4,2]));
sys.InputDelay = 2.7

sys =
A —

x1
X2

B =

x1
X2

yl

0.8

Amplitude

0.4

0.2

x1
-4

Step Response

X2
-2

1.5

2

25
Time (seconds)

3

3.5

1-163

1 Functions

1-164

D:
ul
yl 0
Input delays (seconds): 2.7

Continuous-time state-space model.

Discretize the model using the Tustin discretization method and a Thiran filter to model fractional
delays. The sample time Ts = 1 second.

opt = c2dOptions('Method', 'tustin', 'FractDelayApproxOrder',3);
sysdl = c2d(sys,1,opt)
sysdl =
A =
x1 X2 x3 x4 x5
x1 -0.4286 -0.5714 -0.00265 0.06954 2.286
X2 0.2857 0.7143 -0.001325 0.03477 1.143
x3 0 0 -0.2432 0.1449 -0.1153
x4 0 0 0.25 0 0
x5 0 0 0 0.125 0
B =
ul
x1 0.002058
X2 0.001029
x3 8
x4 0
x5 0
C =
x1 X2 x3 x4 x5
yl 0.2857 0.7143 -0.001325 0.03477 1.143
D =
ul
yl 0.001029

Sample time: 1 seconds
Discrete-time state-space model.

The discretized model now contains three additional states x3, x4, and x5 corresponding to a third-
order Thiran filter. Since the time delay divided by the sample time is 2.7, the third-order Thiran filter
('FractDelayApprox0Order' = 3) can approximate the entire time delay.

Discretize Identified Model

Estimate a continuous-time transfer function, and discretize it.

load iddatal
syslc tfest(z1,2);
sysld c2d(syslc,0.1,'zoh");

Estimate a second order discrete-time transfer function.

c2d

sys2d = tfest(z1l,2,'Ts',0.1);

Compare the response of the discretized continuous-time transfer function model, sys1ld, and the
directly estimated discrete-time model, sys2d.

compare(zl,sysld,sys2d)

Simulated Response Comparison

15

z1 (y1)
sysld: 70.77%
sys2d: 69.3%

Amplitude

-15 ' ' ' ' :
5 10 15 20 25 30
Time (seconds)

The two systems are almost identical.

Build Predictor Model
Discretize an identified state-space model to build a one-step ahead predictor of its response.
Create a continuous-time identified state-space model using estimation data.

load iddata2
sysc = ssest(z2,4);

Predict the 1-step ahead predicted response of sysc.

predict(sysc,z2)

1-165

Functions

1-Step Predicted Response

15

vl
=

Amplitude

10 F | |]
10 I h |

_,.I 5 1 1 1 1 1 1

5 10 15 20 25 30 35 40
Time (seconds)

Discretize the model.

sysd = c2d(sysc,0.1,'zoh');

Build a predictor model from the discretized model, sysd.

[A,B,C,D,K] = idssdata(sysd);
Predictor = ss(A-K*C, [K B-K*D],C,[0 D],0.1);

Predictor is a two-input model which uses the measured output and input signals ([z1.y z1.ul)
to compute the 1-step predicted response of sysc.

Simulate the predictor model to get the same response as the predict command.

lsim(Predictor,[z2.y,z2.u])

1-166

c2d

Linear Simulation Results

=
M——
—

Amplitude

N

_15 1 1 1
0 5 10 15 20 25 30 35 40

Time (seconds)

The simulation of the predictor model gives the same response as predict(sysc,z2).

Input Arguments

sysc — Continuous-time dynamic system
dynamic system model

Continuous-time model, specified as a dynamic system model such as idtf, idss, or idpoly. sysc
cannot be a frequency response data model. sysc can be a SISO or MIMO system, except that the
"matched' discretization method supports SISO systems only.

sysc can have input/output or internal time delays; however, the 'matched', 'impulse’, and
'least-squares' methods do not support state-space models with internal time delays.

The following identified linear systems cannot be discretized directly:

* 1idgrey models whose FunctionTypeis 'c'. Convert to idss model first.
* idproc models. Convert to idtf or idpoly model first.

Ts — Sample time
positive scalar

Sample time, specified as a positive scalar that represents the sampling period of the resulting
discrete-time system. Ts is in TimeUnit, which is the sysc.TimeUnit property.

1-167

1 Functions

1-168

method — Discretization method
‘zoh' (default) | ' foh' | "impulse’ | "tustin' | 'matched' | 'least-squares'

Discretization method, specified as one of the following values:
* 'zoh' — Zero-order hold (default). Assumes the control inputs are piecewise constant over the

sample time Ts.

+ 'foh' — Triangle approximation (modified first-order hold). Assumes the control inputs are
piecewise linear over the sample time Ts.

* 'impulse' — Impulse invariant discretization

* 'tustin' — Bilinear (Tustin) method. To specify this method with frequency prewarping
(formerly known as the 'prewarp' method), use the PrewarpFrequency option of c2dOptions.

* 'matched' — Zero-pole matching method
* 'least-squares' — Least-squares method
* ‘'damped' — Damped Tustin approximation based on the TRBDF2 formula for sparse models only.

For information about the algorithms for each conversion method, see “Continuous-Discrete
Conversion Methods”.

opts — Discretization options
c2dOptions object

Discretization options, specified as a c2dOptions object. For example, specify the prewarp
frequency, order of the Thiran filter or discretization method as an option.

Output Arguments

sysd — Discrete-time model
dynamic system model

Discrete-time model, returned as a dynamic system model of the same type as the input system sysc.

When sysc is an identified (IDLTI) model, sysd:

* Includes both measured and noise components of sysc. The innovations variance A of the
continuous-time identified model sysc, stored in its NoiseVarianceproperty, is interpreted as
the intensity of the spectral density of the noise spectrum. The noise variance in sysd is thus A/Ts.

* Does not include the estimated parameter covariance of sysc. If you want to translate the
covariance while discretizing the model, use translatecov.

G — Mapping of continuous initial conditions of state-space model to discrete-time initial
state vector
matrix

Mapping of continuous-time initial conditions x, and u, of the state-space model sysc to the discrete-
time initial state vector x[0], returned as a matrix. The mapping of initial conditions to the initial state
vector is as follows:

X0

X01=G-|

c2d

For state-space models with time delays, c2d pads the matrix G with zeroes to account for additional
states introduced by discretizing those delays. See “Continuous-Discrete Conversion Methods” for a
discussion of modeling time delays in discretized systems.

See Also

c2d0Options | d2c | d2d | thiran | translatecov
Topics

“Dynamic System Models”

“Transforming Between Discrete-Time and Continuous-Time Representations”
“Continuous-Discrete Conversion Methods”

Introduced before R2006a

1-169

1 Functions

c2dOptions

Create option set for continuous- to discrete-time conversions

Syntax
opts = c2dOptions
opts =

Description

c2dOptions('OptionName', OptionValue)

opts = c2d0ptions returns the default options for c2d.

opts = c2dOptions('OptionName', OptionValue) accepts one or more comma-separated
name/value pairs that specify options for the c2d command. Specify OptionName inside single

quotes.

Input Arguments

Name-Value Pair Arguments

Method

Discretization method, specified as one of the following values:

'zoh'

"foh'

"impulse’
"tustin’

'matched’

'least-squares'

Zero-order hold, where c2d assumes the control inputs are piecewise constant
over the sample time Ts.

Triangle approximation (modified first-order hold), where c2d assumes the
control inputs are piecewise linear over the sample time Ts. (See [1] on page
1-171, p. 228.)

Impulse-invariant discretization.

Bilinear (Tustin) approximation. By default, c2d discretizes with no prewarp
and rounds any fractional time delays to the nearest multiple of the sample
time. To include prewarp, use the PrewarpFrequency option. To approximate
fractional time delays, use theFractDelayApproxOrder option.

Zero-pole matching method. (See [1] on page 1-171, p. 224.) By default, c2d
rounds any fractional time delays to the nearest multiple of the sample time.
To approximate fractional time delays, use the FractDelayApproxQOrder
option.

Least-squares method. Minimize the error between the frequency responses
of the continuous-time and discrete-time systems up to the Nyquist frequency.

For information about the algorithms for each conversion method, see “Continuous-Discrete

Conversion Methods”.

Default: 'zoh'

1-170

c2dOptions

PrewarpFrequency

Prewarp frequency for 'tustin' method, specified in rad/TimeUnit, where TimeUnit is the time
units, specified in the TimeUnit property, of the discretized system. Takes positive scalar values. A
value of 0 corresponds to the standard 'tustin' method without prewarp.

Default: 0

FitOrder

Fit order for ' least-squares' method, specified as an integer. Specifies the order of the discrete-
time model to be fitted to the continuous-time frequency response. Leave the default option 'auto' to
use the order of the continuous-time model, and change it to an integer N to use an N*'-order fit.
Reducing the order helps with unstable poles or pole/zero cancellations at z = -1.

Default: 'auto’

FractDelayApproxOrder

Maximum order of the Thiran filter used to approximate fractional delays in the 'tustin' and
'matched' methods. Takes integer values. A value of 0 means that c2d rounds fractional delays to

the nearest integer multiple of the sample time.

Default: 0

Examples

Discretize Two Models Using Tustin Discretization Method

Generate two random continuous-time state-space models.

rss(3,2,2);
rss(4,4,1);

sysl
sys2

Create an option set for c2d to use the Tustin discretization method and 3.4 rad/s prewarp frequency.
opt = c2dOptions('Method', 'tustin', 'PrewarpFrequency',3.4);

Discretize the models, sys1 and sys2, using the same option set, but different sample times.

dsysl = c2d(sysl1,0.1,opt);
dsys2 = c2d(sys2,0.2,opt);
References

[1] Franklin, G.FE.,, Powell, D.]., and Workman, M.L., Digital Control of Dynamic Systems (3rd Edition),
Prentice Hall, 1997.

See Also
c2d

1-171

1 Functions

Introduced in R2012a

1-172

canon

canon

Canonical state-space realization

Syntax

csys = canon(sys,type)

csys = canon(sys, 'modal',condt)
[csys,T]l= canon()
Description

csys = canon(sys,type) transforms the linear model sys into a canonical state-space model
csys. type specifies whether csys is in modal or companion form.

For information on controllable and observable canonical forms, see “Canonical State-Space
Realizations”.

csys = canon(sys, 'modal', condt) specifies an upper bound condt on the condition number of
the block-diagonalizing transformation. Use condt if you have close lying eigenvalues in csys.

[csys,T]l= canon() also returns the state-coordinate transformation matrix T that relates the
states of the state-space model sys to the states of csys.

Examples

Convert State-Space Model to Companion Canonical Form

aircraftPitchSSModel.mat contains the state-space matrices of an aircraft where the input is
elevator deflection angle 6 and the output is the aircraft pitch angle 6.

a -0.313 56.7 O0][a] [0.232
q| = [-0.0139 —0.426 0|q|+|0.0203|[6]
0 0 56.7 0][6 0
a
y = [00 1]{q|+[0][6]
0

Load the model data to the workspace and create the state-space model sys.

load('aircraftPitchSSModel.mat"');

sys = ss(A,B,C,D)
Sys =
A =
x1 X2 x3
x1 -0.313 56.7 0

1-173

1 Functions

X2 -0.0139 -0.426 0
x3 0 56.7 0
B:
ul

x1 0.232
x2 0.0203
x3 0
C:

x1 x2 x3
yl 0 0 1
D:

ul
yl 0

Continuous-time state-space model.

Convert the resultant state-space model sys to companion canonical form.

Ccsys canon(sys, 'companion')

csys

A:
x3

x2
O -1.709e-16
0
1

x1
x2
x3

-0.9215
-0.739

(ol SO

B:

x1
x2
x3

[oNoN N

C:
x1 x2 x3
yl 0 1.151 -0.6732
D:
ul
yl 0
Continuous-time state-space model.

csys is the companion canonical form of sys.

Convert State-Space Model to Modal Canonical Form
pendulumCartSSModel.mat contains the state-space model of an inverted pendulum on a cart

where the outputs are the cart displacement x and the pendulum angle 6. The control input u is the
horizontal force on the cart.

1-174

canon

X 0 1 0 o]x] [0

X 0-0.1 3 0f|x| |2

ol =lo o o 1|e/F|ol

sl lo-0.5300]a] |5
X

100 01[x| [0
y=[00109+o]”

0

First, load the state-space model sys to the workspace.
load('pendulumCartSSModel.mat', 'sys');
Convert sys to modal canonical form and extract the transformation matrix.

[csys,T] = canon(sys, 'modal')

Csys =
A=
x1 X2 x3 x4
x1 0 0 0 0
X2 0 -0.05 0 0
x3 0 0 -5.503 0
x4 0 0 0 5.453
B:
ul
x1 1.875
X2 6.298
x3 12.8
x4 12.05
C:
x1 X2 x3 x4
yl 16 -4.763 -0.003696 0.003652
y2 0 0.003969 -0.03663 0.03685
D=
ul
yl 0
y2 0

Continuous-time state-space model.
T = 4x4

0.0625 1.2500 -0.0000 -0.1250
0 4.1986 0.0210 -0.4199
0 0.2285 -13.5873 2.4693
0 -0.2251 13.6287 2.4995

csys is the modal canonical form of sys, while T represents the transformation between the state
vectors of sys and csys.

1-175

1 Functions

Convert Zero-Pole-Gain Model to Modal Canonical Form
For this example, consider the following system with doubled poles and clusters of close poles:

(s=1)(s+1)

) = 0 105+ 10.0001)(s — (1 +)5 — (1 = 1))

Create a zpk model of this system and convert it to modal canonical form using the string ‘modal’.

sys = zpk([1 -1],[0 -10 -10.0001 1+1i 1-1i 1+1i 1-1i],100);
csysl = canon(sys, 'modal');

csysl.A
ans = 7x7
0 0 0 0 0 0 0
0 1.0000 1.0000 0 0 0 0
0 -1.0000 1.0000 3.2459 0 0 0
0 0 0 1.0000 1.0000 0 0
0 0 0 -1.0000 1.0000 0 0
0 0 0 0 0 -10.0000 4.0571
0 0 0 0 0 0 -10.0001
csysl.B
ans = 7x1
0.1600
-0.0052
0.0427
-0.0975
0.5319
0
4.0095

sys has a pair of poles at s = -10 and s = -10.0001, and two complex poles of multiplicity 2 at s =
1+i and s = 1-1i. As a result, the modal form csys1 is a state-space model with a block of size 2 for
the two poles near s = - 10, and a block of size 4 for the complex eigenvalues.

Now, separate the two poles near s = - 10 by increasing the value of the condition number of the
block-diagonalizing transformation. Use a value of 1e10 for this example.

csys2 = canon(sys, 'modal',1lel0);

Csys2.A

ans = 7x7
0 0 0 0 0 0 0
0 1.0000 1.0000 0 0 0 0
0 -1.0000 1.0000 3.2459 0 0 0
0 0 0 1.0000 1.0000 0 0
0 0 0 -1.0000 1.0000 0 0
0 0 0 0 0 -10.0000 0

1-176

canon

0 0 0 0 0 0 -10.0001

format shortE
csys2.B

ans = 7x1

.6000e-01
.1885e-03
.2687e-02
.7508e-02
.3187e-01
.6267e+05
.6267e+05

1
el =l O 2 B o N S O, Iy T

The A matrix of csys2 includes separate diagonal elements for the poles near s = - 10. Increasing the
condition number results in some very large values in the B matrix.

Convert System to Companion Canonical Form

The file icEngine.mat contains one data set with 1500 input-output samples collected at the a
sampling rate of 0.04 seconds. The input u(t) is the voltage (V) controlling the By-Pass Idle Air Valve
(BPAV), and the output y (t) is the engine speed (RPM/100).

Use the data in icEngine.mat to create a state-space model with identifiable parameters.

load icEngine.mat

z = iddata(y,u,0.04);

sys = n4sid(z,4, 'InputDelay',2);

Convert the identified state-space model sys to companion canonical form.

csys = canon(sys, 'companion');

Obtain the covariance of the resulting form by running a zero-iteration update to model parameters.
opt = ssestOptions;

opt.SearchOptions.MaxIterations = 0;

csys = ssest(z,csys,opt);

Compare frequency response confidence bounds of sys to csys.

h = bodeplot(sys,csys,'r."');
showConfidence(h)

1-177

1 Functions

1-178

Bode Diagram

From: ul To: vl
40 T T T T

]
—
i

Magnitude (dB)

[
[l g
Lo

'n’ i 1 1 1 1
04 e 102 11 10

Frequency (rad/s)

-
=
.
—
=
T

The frequency response confidence bounds are identical.

Input Arguments

sys — Dynamic system
dynamic system model

Dynamic system, specified as a SISO, or MIMO dynamic system model. Dynamic systems that you can
use include:

* Continuous-time or discrete-time numeric LTI models, such as tf, zpk, ss, or pid models.

* Generalized or uncertain LTI models such as genss or uss models. (Using uncertain models
requires Robust Control Toolbox software.)

The resulting canonical state-space model assumes

* current values of the tunable components for tunable control design blocks.
* nominal model values for uncertain control design blocks.
» Identified LTI models, such as idtf, idss, idproc, idpoly, and idgrey models.

You cannot use frequency-response data models such as frd models.

type — Transformation type
'modal’ (default) | ' companion'

canon

Transformation type, specified as either 'modal' or 'companion'. If type is unspecified, then
canon converts the specified dynamic system model to modal canonical form by default.

The companion canonical form is the same as the observable canonical form. For information on
controllable and observable canonical forms, see “Canonical State-Space Realizations”.

Modal Form

In modal form, A is a block-diagonal matrix. The block size is typically 1-by-1 for real eigenvalues
and 2-by-2 for complex eigenvalues. However, if there are repeated eigenvalues or clusters of
nearby eigenvalues, the block size can be larger.

For example, for a system with eigenvalues (11, 0 = jw, A7), the modal A matrix is of the form

Ay 0 00
0 0 wo
0 ~wo 0
0 0 02y

Companion Form

In the companion realization, the characteristic polynomial of the system appears explicitly in the
rightmost column of the A matrix. For a system with characteristic polynomial

P(s)=s"+as" "1+ .. +a,_1s+ay

the corresponding companion A matrix is

000 ..0 "%
100 ..0 —0p—1
Az 010..0 —-an—»
0 1 ...0 —0n -3
000 .1 g

The companion transformation requires that the system is controllable from the first input. The
transformation to companion form is based on the controllability matrix which is almost always
numerically singular for mid-range orders. Hence, avoid using it when possible.

The companion canonical form is the same as the observable canonical form. For more
information on observable and controllable canonical forms, see “Canonical State-Space
Realizations”.

condt — Upper bound on the condition number of the block-diagonalizing transformation
1le8 (default) | positive scalar

Upper bound on the condition number of the block-diagonalizing transformation, specified as a

positive scalar. This argument is available only when type is set to 'modal".

Increase condt to reduce the size of the eigenvalue clusters in the A matrix of csys. Setting condt

Inf diagonalizes matrix A.

1-179

1 Functions

Output Arguments

csys — Canonical state-space form of the dynamic model
ss model object

Canonical state-space form of the dynamic model, returned as an ss model object. csys is a state-
space realization of sys in the canonical form specified by type.

T — Transformation matrix
matrix

Transformation matrix, returned as an n-by-n matrix, where n is the number of states. T is the

transformation between the state vector x of the state-space model sys and the state vector x, of
CSys:

X, = Tx

This argument is available only when sys is an ss model object.

Limitations

* You cannot use frequency-response data models to convert to canonical state-space form.

* The companion form is poorly conditioned for most state-space computations, that is, the
transformation to companion form is based on the controllability matrix which is almost always
numerically singular for mid-range orders. Hence, avoid using it when possible.

Algorithms

The canon command uses the bdschur command to convert sys into modal form and to compute
the transformation T. If sys is not a state-space model, canon first converts it to state space using
SS.

The reduction to companion form uses a state similarity transformation based on the controllability
matrix [1].

References

[1] Kailath, T. Linear Systems, Prentice-Hall, 1980.

See Also
ctrb| ctrbf | genss |idgrey | idpoly | idproc | idss | idtf | pid|ss|ss2ss|tf |uss | zpk

Topics
“Canonical State-Space Realizations”

Introduced before R2006a

1-180

chgFreqUnit

chgFreqUnit

Change frequency units of frequency-response data model

Syntax

sys new = chgFreqUnit(sys,newfrequnits)

Description

sys new = chgFreqUnit(sys,newfrequnits) changes units of the frequency points in sys to
newfrequnits. Both Frequency and FrequencyUnit properties of sys adjust so that the
frequency responses of sys and sys new match.

Input Arguments

sys

Frequency-response data (frd, idfrd, or genfrd) model
newfrequnits

New units of frequency points, specified as one of the following values:

* ‘'rad/TimeUnit'
* 'cycles/TimeUnit'

* ‘'rad/s'
 'Hz'

+ 'kHz'

* 'MHz'

* 'GHz'

* 'rpm'

rad/TimeUnit and cycles/TimeUnit express frequency units relative to the system time units
specified in the TimeUnit property.

Default: 'rad/TimeUnit'

Output Arguments
sys_new

Frequency-response data model of the same type as sys with new units of frequency points. The
frequency response of sys new is same as Sys.

Examples

1-181

1 Functions

Change Frequency Units of Frequency-Response Data Model
Create a frequency-response data model.

load('AnalyzerData');
sys = frd(resp,freq);

The data file AnalyzerData has column vectors freq and resp. These vectors contain 256 test
frequencies and corresponding complex-valued frequency response points, respectively. The default
frequency units of sys is rad/TimeUnit, where TimeUnit is the system time units.

Change the frequency units.

sysl = chgFreqUnit(sys, 'rpm');

The FrequencyUnit property of sysl is rpm.
Compare the Bode responses of sys and sys1.

bodeplot(sys, 'r',sysl,'y--");
legend('sys', 'sysl')

Bode Diagram

=

Magnitude (dB)

(=]

Frequency (rad/s)

The magnitude and phase of sys and sys1 match because chgFreqUnit command changes the
units of frequency points in sys without modifying system behavior.

Change the FrequencyUnit property of sys to compare the Bode response with the original system.

Sys2 = sys;
sys2.FrequencyUnit = 'rpm';

1-182

chgFreqUnit

bodeplot(sys, 'r',sys2,'gx"');
legend('sys', 'sys2');

Bode Diagram

40 |

Magnitude (dB)

Phase (deqg)

270 T

360 ~ - A
102 10°1 10" 10’ 102
Frequency (rad/s)

Changing the FrequencyUnit property changes the system behavior. Therefore, the Bode responses
of sys and sys2 do not match. For example, the original corner frequency at about 2 rad/s changes
to approximately 2 rpm (or 0.2 rad/s).

Tips

* Use chgFregUnit to change the units of frequency points without modifying system behavior.

See Also
chgTimeUnit | frd | idfrd

Topics
“Specify Frequency Units of Frequency-Response Data Model” (Control System Toolbox)

Introduced in R2012a

1-183

1 Functions

chgTimeUnit

Change time units of dynamic system

Syntax

sys new = chgTimeUnit(sys,newtimeunits)

Description

sys new = chgTimeUnit(sys,newtimeunits) changes the time units of sys to newtimeunits.
The time- and frequency-domain characteristics of sys and sys new match.

Input Arguments
sys

Dynamic system model
newtimeunits

New time units, specified as one of the following values:

* 'nanoseconds'
* 'microseconds'
e 'milliseconds'
*+ 'seconds'

* 'minutes'

* ‘'hours'
+ ‘'days'

* 'weeks'
* 'months'
+ 'years'

Default: 'seconds'

Output Arguments
Sys_new

Dynamic system model of the same type as sys with new time units. The time response of sys new is
same as SYsS.

If sys is an identified linear model, both the model parameters as and their minimum and maximum
bounds are scaled to the new time units.

1-184

chgTimeUnit

Examples

Change Time Units of Dynamic System Model

Create a transfer function model.

num = [4 2];
den = [1 3 10];
sys = tf(num,den);

By default, the time unit of sys is 'seconds'. Create a new model with the time units changed to
minutes.

sysl = chgTimeUnit(sys, 'minutes');

This command sets the TimeUnit property of sysl to 'minutes', without changing the dynamics.
To confirm that the dynamics are unchanged, compare the step responses of sys and sys1.

stepplot(sys, 'r',sysl, 'y--');
legend('sys', 'sysl');

Step Response

o
X

SYS
D8 £ sysl | 7
/ L]
oyr v]
| !
ael | \ i
o
I i
8os| | ~
e F -
= - [i\
=
=1 f '
E0dr| ! 1
<L, | |
o [
0.3r 1
| %
i -, | A - - - - -
D2 He, e T T T s -
| -
i hY
"
01y - 1
wr
0 0.5 1 1.5 2 5 3 3.5 4

2.
Time (seconds)

The step responses are the same.

If you change the TimeUnit property of the system instead of using chgTimeUnit, the dynamics of
the system do change. To see this, change the TimeUnit property of a copy of sys and compare the
step response with the original system.

1-185

1 Functions

Sys2 = sys;

sys2.TimeUnit = 'minutes’;
stepplot(sys, 'r',sys2,'gx');
legend('sys', 'sys2');

Step Response

EE} T T T T

5Ys

081 2% sys2 | 1

Amplitude

o

0 50 100 150 200 250
Time (seconds)

The step responses of sys and sys2 do not match. For example, the original rise time of 0.04 seconds
changes to 0.04 minutes.
Tips

* Use chgTimeUnit to change the time units without modifying system behavior.

See Also
chgFrequUnit | frd | idpoly | idproc | idss | idtf | pid|ss | tf | zpk

Topics
“Specify Model Time Units” (Control System Toolbox)

Introduced in R2012a

1-186

clone

clone

Copy online parameter estimation System object

Syntax

obj_clone = clone(obj)

Description

obj clone = clone(obj) creates a copy of the online parameter estimation System object™, obj,
with the same property values. If the object you clone is locked, the new object is also locked.

clone is not supported for code generation using MATLAB Coder™.

Note If you want to copy an existing System object and then modify properties of the copied object,
use the clone command. Do not create additional objects using syntax obj2 = obj. Any changes
made to the properties of the new System object created this way (obj2) also change the properties
of the original System object (obj).

Examples

Clone an Online Estimation System Object

Create a System object™ for online estimation of an ARX model with default properties.

obj = recursiveARX

obj =
recursiveARX with properties:
A T[]
B: [1]
InitialA: [1 2.2204e-16]
InitialB: [0 2.2204e-16]

ParameterCovariance: []
InitialParameterCovariance: [2x2 double]
EstimationMethod: 'ForgettingFactor'
ForgettingFactor: 1
EnableAdaptation: true
History: 'Infinite'
InputProcessing: 'Sample-based'’
DataType: 'double’

Use clone to generate an object with the same properties as the original object.
obj2 = clone(obj)

obj2 =
recursiveARX with properties:

1-187

1 Functions

A]
B: []
InitialA: [1 2.2204e-16]
InitialB: [0 2.2204e-16]
ParameterCovariance: []
InitialParameterCovariance: [2x2 double]
EstimationMethod: 'ForgettingFactor'
ForgettingFactor: 1
EnableAdaptation: true
History: 'Infinite'
InputProcessing: 'Sample-based'
DataType: 'double’

Input Arguments

obj — System object for online parameter estimation
recursiveAR object | recursiveARMA object | recursiveARX object | recursiveARMAX object |
recursiveOE object | recursiveBJ object | recursivelsS object

System object for online parameter estimation, created using one of the following commands:

* recursiveAR

* recursiveARMA
* recursiveARX

* recursiveARMAX
* recursiveOE

* recursiveBl]

* recursivelS

Output Arguments

obj_clone — Copy of online estimation System object
System object

Copy of online estimation System object, obj, returned as a System object with the same properties
as obj.

See Also
isLocked | recursiveAR | recursiveARMA | recursiveARMAX | recursiveARX | recursiveBJ |
recursivelS | recursiveOE | release | reset | step

Topics
“What Is Online Estimation?”

Introduced in R2015b

1-188

clone

clone

Copy online state estimation object

Syntax

obj clone = clone(obj)

Description

obj clone = clone(obj) creates a copy of the online state estimation object obj with the same
property values.

If you want to copy an existing object and then modify properties of the copied object, use the clone
command. Do not create additional objects using syntax obj2 = obj. Any changes made to the
properties of the new object created in this way (obj2) also change the properties of the original
object (obj).

Examples

Clone an Online State Estimation Object

Create an extended Kalman filter object for a van der Pol oscillator with two states and one output. To
create the object, use the previously written and saved state transition and measurement functions,
vdpStateFcn.mand vdpMeasurementFcn.m. Specify the initial state values for the two states as
[2;0].

obj = extendedKalmanFilter(@vdpStateFcn,@vdpMeasurementFcn,[2;0])

obj =
extendedKalmanFilter with properties:

HasAdditiveProcessNoise: 1
StateTransitionFcn: @vdpStateFcn
HasAdditiveMeasurementNoise: 1
MeasurementFcn: @vdpMeasurementFcn
StateTransitionJacobianFcn: []
MeasurementJacobianFcn: []
State: [2x1 double]
StateCovariance: [2x2 double]
ProcessNoise: [2x2 double]
MeasurementNoise: 1

Use clone to generate an object with the same properties as the original object.
obj2 = clone(obj)

obj2 =
extendedKalmanFilter with properties:

HasAdditiveProcessNoise: 1

1-189

1 Functions

StateTransitionFcn: @vdpStateFcn

HasAdditiveMeasurementNoise: 1
MeasurementFcn: @vdpMeasurementFcn

StateTransitionJacobianFcn: []
MeasurementJacobianFcn: []

State: [2x1 double]

StateCovariance: [2x2 double]

ProcessNoise: [2x2 double]
MeasurementNoise: 1

Modify the MeasurementNoise property of obj2.
obj2.MeasurementNoise = 2;
Verify that the MeasurementNoise property of original object obj remains unchanged and equals 1.

obj.MeasurementNoise

ans =1

Input Arguments

obj — Object for online state estimation
extendedKalmanFilter object | unscentedKalmanFilter object | particleFilter object

Object for online state estimation of a nonlinear system, created using one of the following
commands:

+ extendedKalmanFilter
* unscentedKalmanFilter
* particleFilter

Output Arguments

obj_clone — Clone of online state estimation object
extendedKalmanFilter object | unscentedKalmanFilter object | particleFilter object

Clone of online state estimation object obj, returned as an extendedKalmanFilter,
unscentedKalmanFilter or particleFilter object with the same properties as obj.

See Also
correct | extendedKalmanFilter | initialize | particleFilter | predict |
unscentedKalmanFilter

Topics
“What Is Online Estimation?”

Introduced in R2016b

1-190

compare

compare

Compare identified model output and measured output

Syntax

data,sys)

data,sys, kstep)

data,sys,LineSpec, kstep)

data,sysl,...,sysN,kstep)

data,sysl,LineSpecl,...,sysN,LineSpecN, kstep)
,opt)

compare
compare
compare
compare
compare
compare

.~~~ o~~~

[y,fit,ic] = compare()

Description

Plot Results

compare(data, sys) simulates the response of a dynamic system model, and superimposes that
response over plotted measurement data. The plot also displays the normalized root mean square
(NRMSE) measure of the goodness of the fit between simulated response and measurement data. Use
this function when you want to evaluate a set of candidate models identified from the same
measurement data, or when you want to validate a model you have selected. You can use compare
with time-domain or frequency-domain models and data.

compare(data, sys, kstep) also predicts the response of sys, using a prediction horizon specified
by kstep. Prediction uses output measurements as well as input measurements to project a future
response. kstep represents the number of time samples between the timepoint of each output
measurement and the timepoint of the resulting predicted response. For more information on
prediction, see “Simulate and Predict Identified Model Output”.

compare(data,sys,LineSpec, kstep) also specifies the line type, marker symbol, and color for
the model response.

compare(data,sysl,...,sysN,kstep) compares the responses of multiple dynamic systems on
the same axes. compare automatically chooses the line specifications.

compare(data,sysl,LineSpecl,...,sysN,LineSpecN, kstep) also compares the responses of
multiple systems on the same axes using the line type, marker symbol, and color specified for each
system.

compare (,opt) configures the comparison using an option set. Options include initial condition
han